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Chapter 1

Introduction

This work deals with the connection between two basic phenomena in Nonlinear
Dynamics: synchronization of chaotic systems and recurrences in phase space.
Synchronization takes place when two or more systems adapt (synchronize) some
characteristic of their respective motions, due to an interaction between the sys-
tems or to a common external forcing. The appearance of synchronized dynamics
in chaotic systems is rather universal but not trivial. In some sense, the possibil-
ity that two chaotic systems synchronize is counterintuitive: chaotic systems are
characterized by the sensitivity to different initial conditions. Hence, two identi-
cal chaotic systems starting at two slightly different initial conditions evolve in a
different manner, and after a certain time, they become uncorrelated. Therefore,
at a first glance, it does not seem to be plausible that two chaotic systems are
able to synchronize. But as we will see later, synchronization of chaotic systems
has been demonstrated.
The study of synchronization goes back to the 17th century and begins with the
analysis of synchronization of nonlinear periodic systems. Well known examples
are the synchronization of two pendulum clocks that hang on the same beam (it
was through this system, that Huygens discovered synchronization), the synchro-
nized flashing of fireflies, or the peculiarities of adjacent organ pipes which can
almost annihilate each other or speak in unison. But the research of chaotic syn-
chronization does not begin until the eighties [20, 62, 2, 61], where it was shown
that two chaotic systems can become completely synchronized, i. e. their time
evolution becomes identical. This finding has had very important consequences
for the design of secure communication devices [84, 104, 28]. The synchronized
chaotic trajectories can be used to mask messages and prevent their intercep-
tion. In [2, 78] the notion of complete synchronization of chaotic systems was
generalized, allowing the non identity between the coupled systems. And some
time later, Rosenblum et al. considered a rather weak degree of synchroniza-
tion between chaotic oscillators, of which their associated phases become locked,
whereas their amplitudes remain almost uncorrelated. Hence, they called this
kind of synchronization, phase synchronization [74]. Not only laboratory exper-
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2 CHAPTER 1. INTRODUCTION

iments have demonstrated phase synchronization of chaotic oscillators, such as
electronic circuits [58], lasers [3] and electrochemical oscillators [30, 31, 32], but
also natural systems can exhibit phase synchronization. For example, the dy-
namics of the cardiorespiratory system [79], an extended ecological system [11],
and the electroencephalographic activity of Parkinsonian patients [88] display
synchronization features.
On one hand it is important to investigate the conditions under which synchro-
nization of chaotic systems occurs, and on the other hand, to develop tests for the
detection of synchronization. In this work, I concentrate on the second task for
the cases of phase synchronization (PS) and generalized synchronization (GS).
Several measures have been proposed so far for the detection of PS and GS (see
Secs. 5.1 and 5.3). However, difficulties arise with the detection of synchroniza-
tion in systems subjected to rather large amounts of noise and/or instationarities,
which are common when analyzing experimental data. The new measures that
will be proposed in the course of this thesis are rather robust with respect to
these effects. They hence allow to be applied to data, which have evaded syn-
chronization analysis so far.
The proposed tests for synchronization in this work are based on the fundamental
property of recurrences in phase space. The concept of recurrence goes back to
Poincaré [67], who proved that after a sufficiently long time, the trajectory of a
chaotic system in phase space will return arbitrarily close to any former point of
its route with probability one. The concept of recurrence within the framework
of chaotic systems was, since then, not considered anymore until the sixties, with
Lorenz’s discovery of three ordinary differential equations that exhibit chaotic
behavior [43]. In [44] Lorenz wrote about ”natural occurring analogues”, i. e.
dynamical states that are very close to states that have happened in the past.
Based on this concept, he proposed different algorithms to predict the future evo-
lution of dynamical systems. Later on, Eckmann et al. introduced the method of
recurrence plots (RPs), a technique that visualizes the recurrences of a dynam-
ical system and gives information about the behavior of its trajectory in phase
space. This method has become rather popular in the last years because of its
applicability to rather short and non-stationary time series. Furthermore, a more
theoretical study of the relationship between RPs and the properties of dynami-
cal systems has been addressed in [16, 19, 22, 90, 91, 92, 93]. However, there are
still open problems: e. g. the extension of the concept of recurrence to study the
relationship between interacting systems has not been exhaustively investigated
from a theoretical point of view. This is one of the main points that will be
addressed here.
In this thesis, the recurrences of two interacting systems are related to the syn-
chronization features of chaotic systems. After an introduction to the method of
RPs (Chap. 2), a new method to calculate recurrence plots of multivariate time
series is proposed [72], which is called “joint recurrence plots” (Chap. 3). This
technique differs substantially from the former method proposed for the analysis
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of bivariate time series and allows to estimate joint dynamical invariants of the
interacting subsystems, such as the joint Rényi entropy of second order and the
cross mutual information. Although this method is suitable for the study of any
coupled system, I concentrate on the analysis of synchronization of chaotic sys-
tems by means of the joint Rényi entropy (Chap. 4). However, this analysis yields
valuable information only when the parameters of the system under consideration
can be changed systematically and it is rather time consuming. Hence, in the
last part of the thesis four different indices for the analysis of PS and GS are
proposed, which are also based on recurrences [73, 42]. They indicate the onset
of PS and respectively GS rather well and therefore, they are appropriate as test
statistics for the performance of a hypothesis test. They have the advantage,
that they are applicable also for systems with a rather strong phase diffusion,
such as the paradigmatic Rössler system in the funnel regime. Furthermore, the
proposed indices are rather pragmatic, as they allow detecting synchronization
for time series, which are strongly corrupted by noise and non-stationarities. An
analysis based on these measures is then demonstrated for experimental data
from electrochemical oscillators (Chap. 5).
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Chapter 2

Recurrence Plots and their
Quantification

Recurrence Plots (RPs) were introduced by Eckmann et al. in 1987 to visualize
the behavior of trajectories of dynamical systems in phase space [18]. There,
they write: ”... recurrence plots are rather easily obtained aids for the diagnosis

of dynamical systems. They display important and easily interpretable informa-

tion about time scales which are otherwise rather inaccessible.”

Later, this tool of data analysis proved to be useful not only as a visualization
technique, but also motivated quantification measures for the local rate of diver-
gence, even for data sets with just few hundred values [39, 41]. Furthermore, a
set of measures, constituting what is now known as Recurrence Quantification
Analysis (RQA) was proposed to quantify systematically the different structures
found in RPs [98]. The RQA became very popular and found numerous appli-
cations in different fields, especially for natural systems, such as in Physiology
[98, 99, 109, 108, 110], in Geology [49, 96] and in Economy [23, 86]. Among these
applications, the contributions to the enhancement of the method of RQA by
Marwan et al. are outstanding, reflecting the wide applicability of this technique
to measured data sets [45, 46, 47, 50].
Moreover, the theoretical relationship between RPs and dynamical invariants,
such as the largest Lyapunov exponent, was not given explicitely in the papers
cited above. For example, Atay and Alintaş suggest in [8] that the average length
of the diagonal lines in the RP is directly related to the inverse of the largest Lya-
punov exponent. However, a rigorous derivation of this conjecture was lacking.
In [19, 91] it was shown rigorously first, that there is a direct relationship between
RPs and some dynamical invariants, so that RPs can be also used to estimate
them. Further theoretical results about RPs and nonlinear dynamics were pre-
sented in [92, 93, 94].
In this chapter, a short introduction to the methods of RPs and RQA is given and
the main theoretical results about recurrences and some properties of dynamical
systems are summarized.
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6 CHAPTER 2. RPS AND THEIR QUANTIFICATION

2.1 Recurrence Plots

As mentioned above, RPs provide a visual impression of the trajectory of a dy-
namical system in phase space. Suppose that the time series {xi}N

i=1 representing
the trajectory of a system in phase space is given, with xi ∈ Rd. The RP is based
on the following matrix

Ri,j = Θ(ε− ||xi − xj||), i, j = 1, . . . , N, (2.1)

where Θ(·) is the Heaviside function, || · || denotes a norm and ε is a predefined
threshold. We will use the maximum norm throughout this work. Then the
value 1 is coded as a black dot and the value 0 as white one in the RP. Hence,
we obtain a 2-dimensional N ×N matrix, which is symmetric with respect to the
main diagonal i = j.
In Fig. 2.1 the RPs of three prototypical systems are represented. We observe

Figure 2.1: a) RP of a purely periodic function, b) RP of the Rössler system with
standard parameters (see Eq. 2.19), c) RP of a realization of white noise.

that the RP of the purely periodic function (Fig. 2.1 a) consists of uninterrupted
diagonal lines separated by the distance T , where T is the period of the func-
tion. This is due to the fact, that after one period, the position of the system
in phase space is exactly the same, i.e we have identical recurrence and ε could
be very small. The RP of white noise (Fig. 2.1 c) is rather homogenous, consist-
ing of mainly single points, indicating the randomness of the system. The RP
of a chaotic system (in this case, the Rössler system with standard parameters,
Eq. 2.19) is represented in Fig. 2.1 b. The predominant structures here are inter-
mediate between the ones of periodic systems and the ones of purely stochastic
systems:

• The distance (in perpendicular direction to the main diagonal) between
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diagonal lines is not constant. This is due to the multiple time scales
present in chaotic systems.

• The diagonal lines are, due to the exponential divergence of nearby tra-
jectories (the hallmark of chaos), interrupted. When the trajectory of a
system recurs to the neighborhood of a former visited point in phase space,
the system behaves similarly to the former situation (which is a hallmark
of determinism). But due to the sensitivity to slightly different initial con-
ditions, after a certain time, the trajectories separate and hence, the line is
interrupted.

We note that the length of the lines is related to the predictability of the system.
This is the argument used in [8], among others, to argue that the largest Lyapunov
exponent can be estimated by the inverse of the mean length of the diagonals in
the RP. However, as will be shown later, this relationship does not hold exactly.

2.2 Recurrence Quantification Analysis

The Recurrence Quantification Analysis (RQA) was introduced in [106, 98] with
the aim of quantifying the structures found in RPs and hence, go beyond the
purely visual classification. The quantification of diagonal structures is funda-
mental for the RQA, since they are a key concept for the classification of the
different kinds of dynamics. Some of the most important recurrence quantifica-
tion measures are

• Recurrence Rate (RR): it is defined as the percentage of black points in
the RP, i. e.

RR =
1

N2

N∑

i,j=1

Θ(ε− ||xi − xj||). (2.2)

Note, that the definition of RR coincides with the definition of the correla-
tion sum [24].

• Determinism (DET ): it is defined as the the percentage of black points
which are part of diagonal lines of at least length lmin [48],

DET =

∑N
l=lmin

lP (l)
∑N

l=1 lP (l)
, (2.3)

where P (l) denotes the probability to find a diagonal line of length l in
the RP. This measure was introduced to quantify how predictable a system
is. For a periodic system, one gets DET = 1 and for a purely stochastic
system DET tends to zero. However, the results depend crucially on lmin,
of which the choice is ambiguous [48].
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• Divergence (DIV ): it is defined as

DIV =
1

Lmax
, (2.4)

where Lmax is the length of the longest diagonal found in the RP (of course,
the main diagonal is not considered). This measure has been used also to
estimate the largest Lyapunov exponent [97].

• Entropy (ENTR): is the Shannon entropy of the frequency distribution
of diagonal lines in the plot,

ENTR = −
N∑

l=lmin

p(l) ln p(l), (2.5)

where p(l) = P (l)/
∑N

l=lmin
P (l). This measure is designed to quantify the

complexity of the deterministic structure in the system [48].

• Trend (TREND): it is a linear regression coefficient over the recurrence
rate on each diagonal line parallel to the main diagonal,

TREND =

∑Ñ
i=1(i− Ñ/2)(RRi− < RRi >)

∑Ñ
i=1(i− Ñ)2

, (2.6)

where Ñ < N , to avoid finite size effects [48]. This measure quantifies the
non-stationarity of the system.

• Ratio (RATIO): is the ratio between DET and RR,

RATIO =
DET

RR
. (2.7)

This measure was introduced to determine some transitions between differ-
ent physiological states, where the RR changes, but not the DET [98].

The measures of RR, DET , DIV and ENTR can be also computed for each
diagonal line parallel to the main diagonal. Hence, they can be obtained in de-
pendence on the distance to the main diagonal [47].
The measures introduced up to now quantify efficiently the structures that differ-
ent dynamical systems generate in RPs. However, the main problem with them
is that they depend rather sensitively on the choice of the embedding parameters.
Dealing with measured data, one has to embed the time series first to reconstruct
the attractor in phase space [87]. But there is some ambiguity in choosing the
most appropriate embedding parameters [29]. Slightly different choices of the
parameters lead to a different outcome when applying the RQA.
The measures mentioned above are based on the distribution of diagonal lines
P (l). Marwan and Kurths introduced three new measures [47], that quantify
vertical structures (respectively horizontal, because of the symmetry), which are:
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• Laminarity (LAM): it is analogously to the DET , defined as the percent-
age of black points, that belong to vertical lines of at least length lmin:

LAM =

∑N
l=lmin

lPv(l)∑N
l=1 lPv(l)

, (2.8)

where Pv(l) denotes the probability to find a vertical line of length l in the
RP. LAM quantifies the occurrence of laminar states in a given trajectory.

• Trapping Time (TT ): it is the mean length of vertical lines

TT =

∑N
l=lmin

lPv(l)∑N
l=lmin

Pv(l)
, (2.9)

and measures the mean time that the system sticks to a certain state, i. e.
how long the trajectory will be trapped.

• Maximal vertical length (Vmax), is analogous to the longest diagonal line
in the RP (respectively, its inverse can be considered).

These last measures based on the distribution of vertical lines, allow to identify
intermittency and laminar structures, which makes it possible to detect chaos-
chaos transitions [45]. Furthermore, they are rather robust against noise. This is
a great advantage of these measures with respect to the former RQA ones.
However, because of the uncertainty in the quantification measures of diagonal
structures in RPs, it is necessary to introduce new measures, which are invariant
with respect to different choices of the embedding parameters. In the next section,
I resume the theoretical results about the estimation of dynamical invariants by
means of the recurrence matrix found by Thiel et al. [91, 92].

2.3 Dynamical Invariants Estimated by Recur-

rence Plots

The visual inspection of RPs of different systems (e. g. Fig. 2.1) reveals that
diagonal structures play a key role in the codification of the dynamics in the
recurrence matrix. Hence, it is plausible to look at the distribution of diagonal
lines in the RP in order to see how it depends on the dynamics of the system
under consideration. To estimate the distribution of the diagonals in the RP, we
start with the correlation sum [25]

C(ε) =
1

N2
× {number of pairs (i, j) with||xi − xj|| < ε}, (2.10)
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where N is assumed to be large but finite [1]. Note that the definition of the
recurrence rate RR (Eq. 2.2) coincides with the definition of the correlation sum
[90]

C(ε) =
1

N2

N∑

i=1

Θ (ε− ||xi − xj||) = RR. (2.11)

This fact allows to relate the known results about the correlation integral to the
structures in RPs.
Suppose that we have a trajectory x(t) in the basin of an attractor in the d-
dimensional phase space. The state of the system is measured at time intervals
τ . Let {1, 2, ...,M(ε)} be a partition of the phase space in boxes of size ε. Then
p(i1, ..., il) denotes the joint probability that x(τ) is in the box i1, x(2τ) is in the
box i2, ..., and x(lτ) is in the box il. The order-2 Rényi entropy [71, 26] is then
defined as

K2 = − lim
τ→0

lim
ε→0

lim
l→∞

1

lτ
ln
∑

i1,...,il

p2(i1, . . . , il). (2.12)

We can approximate p(i1, . . . , il) by the probability Pt,l(x, ε) of finding a sequence
of points in boxes of length ε about x(t = τ), x(t = 2τ), ..., x(t = lτ). Assuming
that the system is ergodic, which is always the case for chaotic systems as they
are mixing, we obtain

∑

i1,...,il

p2(i1, . . . , il) =
1

N

N∑

t=1

pt(i1, . . . , il) ∼
1

N

N∑

t=1

Pt,l(x, ε), (2.13)

where pt(i1, . . . , il) represents the probability of being in the box i1 at time t = τ ,
in the box i2 at time t = 2τ , ... and in the box il at time t = lτ . Furthermore,
we can express Pt,l(x, ε) by means of the recurrence matrix

Pt,l(x, ε) =
1

N

N∑

s=1

l−1∏

m=0

Θ (ε− ||xt+m − xs+m||) =
1

N

N∑

s=1

l−1∏

m=0

Rt+m,s+m. (2.14)

Hence, we obtain an estimator for the order-2 Rényi entropy by means of the RP

K̂2(ε, l) = − 1

lτ
ln

(
1

N2

N∑

t,s=1

l−1∏

m=0

Rt+m,s+m

)

︸ ︷︷ ︸
(∗)

. (2.15)

Note that (∗) is the cumulative distribution of diagonal lines P c
ε (l) in the RP, i. e.

the probability to find a diagonal of at least length l.
On the other hand, we note that for the l-dimensional correlation integral Cl(ε)
[27]

Cl(ε) ∼ εν exp(−lτK2) '
∑

i1,...,il

p2(i1, ..., il) (2.16)
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holds, where ν represents the correlation dimension. Hence, we conclude that

P c
ε (l) ' εν exp(−lτK2). (2.17)

Based on this formula, we can estimate two dynamical invariants from RPs:

• the Rényi entropy of second order K̂2: representing P c
ε (l) in a loga-

rithmic scale versus l we obtain a straight line with slope −K̂2(ε)τ for large
l’s.

• the correlation dimension ν̂: from the vertical distance between P c
ε (l)

for different ε‘s, one can derive

ν̂(ε) = ln

(
P c

ε (l)

P c
ε+∆ε(l)

)(
ln

(
ε

ε+ ∆ε

))
−1

. (2.18)

These measures have, among other things the advantage that if only one observ-
able of the system under consideration has been observed, one can calculate them
from the reconstructed attractor [1, 87]. In contrast, this does not hold for the
measures proposed for the RQA. Furthermore, Thiel et al. have shown in [92],
that the estimation of these two dynamical invariants by means of recurrences is
independent of the embedding parameters used for the phase space reconstruc-
tion. That means, even without any embedding, one gets the correct estimation
for K2 and ν. This is a main advantage of this estimation, as the choice of the
appropriate embedding parameters is still a controversial issue.
For the practical application, one has to compute first the cumulative distribu-
tion of diagonals for different thresholds ε. The question arises, which values of
ε one should consider. As each system has its own amplitude, which may differ
from one system to another one, the choice will be different for each case and it
is subjected to some arbitrariness. In order to overcome this problem, we can fix
the value of RR, because it is normalized, and then calculate the corresponding
ε. This can be done by the following algorithm:

1. Compute the distances between each pair of vectors i = 1, . . . , N and j =
1, . . . , i. Then we obtain the series dl with l = 1, . . . , N2/2 (because of the
symmetry of the RP, we consider only the half of the matrix. Actually the
length of the series of the distances is equal to N 2/2−N , but for large N ,
we can write N 2/2.).

2. Sort the distances dl in ascending order and denote the rank ordered dis-
tances by d̃l, with l = 1, . . . , N2/2.

3. For a fixed RR (Eq. 2.2) the corresponding ε is then given by d̃m, with
m = RRN2

2
. For example, if RR = 0.01, then ε = d̃0.01N2/2. We then know

that 1% of the distances are less or equal than ε, and hence RR = 0.01.

Like this, we avoid the arbitrariness of choosing appropriate values for ε and we
can apply the same procedure for all systems.
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2.3.1 Application to Three Prototypical Examples

In order to illustrate the estimation of dynamical invariants by means of RPs we
compute K2 for the three prototypical examples presented in Fig. 2.1:

• The sine function: f(t) = sin(ωt) (Fig. 2.2). The slope of the logarithmic
distribution of diagonals versus the length is almost zero, which is reflected
in Fig. 2.2 b. Hence, the estimated value of K̂2 is almost zero, as expected.
The fact that it is not exactly zero, is due to the finite size of the plot (in
principle, the diagonal lines have infinite length, but they are truncated
because of the finite time series we have used).

Figure 2.2: (a) Distribution of diagonals in the RP of a sine function. Each line
represents the distribution of diagonals for a different RR (Eq. 2.2). Here, the lines
corresponding to values of RR from 0.01 to 0.9 are shown. (b) Estimator of the Rényi
entropy.

• The Rössler system:

ẋ = −y − z

ẏ = x+ ay (2.19)

ż = b+ z(x − c),

with standard parameters a = b = 0.2 and c = 5.7. In the logarithmic
representation of the distribution of diagonals (Fig. 2.3 a) we see two dif-
ferent slopes. The second slope begins at l = 85 (which corresponds to 17



2.3. DYNAMICAL INVARIANTS 13

s, because the sampling unit is equal to 0.2 s), and as the Rényi entropy
is defined for large lengths (Eq. 2.12), this is the slope which is related to
K2. We obtain K̂2 = 0.071 ± 0.001, which is in excellent accordance with
the values given in the literature [4]. The first slope ranges from l = 0 to
l = 84 and is larger than the second one. The dynamical meaning of this
first slope is linked to the geometry of the attractor under consideration
[91]. The parameters regarded in this example (Eq. 2.19) correspond to a
three-band structure in the chaotic attractor, i. e. the trajectory recurs typ-
ically to a former neighborhood after three rotations about the fixed point.
The length l = 84 corresponds to the time (in the sampling units used for
the integration) that the trajectory needs to complete three rotations about
the fixed point. Varying the parameter c of Eq. 2.19, the structure of the
attractor changes, so that we obtain a two-band or a one-band structure.
Then, the first slope extends from l = 1 to the length corresponding to two,
respectively one rotations about the fixed point. Furthermore, the distri-
bution of unstable periodic orbits (UPOs) of the Rössler system with the
three-band attractor has a maximum at the period length three.
Hence, the first slope and the length lcrit, where the second slope begins, are
related to the topology of the attractor. One can interpret the first slope
as the short-term predictability of the system: if we do not have enough
information about the attractor (the trajectory is shorter than e. g. three
rotations), we can predict the evolution of the trajectory worse than if we
have a longer trajectory. In the case of the set of parameters a = b = 0.2
and c = 5.7, the ”skeleton” of the attractor consists mainly of a UPO of
length three. If the trajectory is longer than three rotations, the attractor
has been ”scanned” almost completely, and the prediction becomes easier.
We also find a scaling law of the first slope with the threshold ε, because
the lines in log(P c

ε (l)) versus l are parallel for small l’s too.
Furthermore, these results coincide with the findings presented by An-
ishchenko et al. in [5] by an independent method. There, they have re-
lated the first slope to the amplitude fluctuations and the second one, to
the phase diffusion of the system. This is also related to the nonhyperbol-
icity of the system under consideration. The traditional estimation of K2

by means of the correlation sum of the embedded time series [24] does not
allow to detect the first slope. Hence, this is an important advantage of the
estimation based on RPs.

• Independent white noise: {ηi}N
i=1, with autocorrelation function Ci,j = δi,j.

The distribution of diagonal lines, as well as the estimator for K2 are rep-
resented in Fig. 2.4. We observe, that the slope of log(P c

ε (l)) versus l is
different for each threshold ε, and increases with decreasing ε, i. e. the
slope tends to ”−∞” as ε tends to zero and therefore, the estimate of K2

is ∞, as expected.
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Figure 2.3: (a) Distribution of diagonals in the RP of a Rössler system with standard
parameters (Eq. 2.19). Each line corresponds to a different RR. (b) Estimator of the
Rényi entropy.

2.4 Information about the System Contained in

RPs

One important question from a theoretical point of view is, how much information
about the system is lost by mapping the trajectory of the system onto the binary
recurrence matrix of Eq. (2.1). Intuitively, one would expect that some properties
of the dynamical system are not reflected in the RP anymore, as the trajectory is
now represented only by two symbols (”1” and ”0”). But Thiel et al. have shown
in [93] that it is possible to reconstruct the rank order of a time series, when only
its corresponding RP is given. They have proposed an algorithm that reconstructs
the time series, except its distribution, only considering the relationship between
the neighborhoods of each point.
Furthermore, it is known, that it is possible to calculate the dynamical invariants
from the rank ordered time series [9]. Hence, all relevant information about
the dynamics of the system is contained in RP.

2.5 Cross Recurrence Plots

Cross Recurrence Plots (CRPs) are an extension of RPs and were introduced to
analyze the dependencies between two different systems [107, 47]. They can be
considered as generalization of the linear cross correlation function. The main
advantage of CRPs with respect to other data analysis methods is their appli-
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Figure 2.4: (a) Distribution of diagonals in the RP of white noise normally distributed.
Each line corresponds to a different RR. (b) Estimator of the Rényi entropy.

cability to non-stationary and rather short time series [47, 18]. They have been
successfully applied to observed time series from climate, geological and physio-
logical systems [49, 46, 45, 47, 82].
Suppose we have two dynamical systems, each one represented by the trajectories
{xi} and {yi} in a d-dimensional phase space for i = 1, . . . , N . Analogously to
the RP, the corresponding cross recurrence matrix is defined by

CRi,j = Θ (ε− ||xi − yj||) , i, j = 1, . . . , N. (2.20)

The measures of the RQA can be applied also to this cross recurrence matrix,
but they may be misleading for certain applications. For example, if we consider
two sine functions in their two dimensional phase spaces with frequencies ω and
2ω we obtain a periodic pattern of lines with slope 2 (see Fig. 2.5) (or 0.5 if the
axes are interchanged). Then, even though the relationship between both sine
functions is totally deterministic, the value obtained for DET will be rather low
because we do not have lines parallel to the main diagonal, i. e. with slope 1.
However, a detailed interpretation of diagonal lines in CRPs is given in [51].
Furthermore, the method of CRPs has some other important drawbacks, mainly

due to the calculation of distances between two physically different time series.
As the physical units of the two time series are in general different, it makes no
sense from a physical point of view to compute the differences. Furthermore,
if the dimensions of the systems x and y are different, it is not clear how to
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Figure 2.5: CRP of two periodic functions with frequencies ω and 2ω, respectively.
The determinism for this example is equal to 0.395.

compute the difference between vectors with a different number of components.
Moreover, the CRP is not invariant with respect to an interchange of the order
of the components of the systems’ vectors: suppose that we have measured xi

and yi, for i = 1, . . . , N , with x,y ∈ R3. If we now interchange the first and
the second component in x and then compute the CRP, the matrix in general
changes.
Beyond this, the method of CRPs is not appropriate for the analysis of synchro-
nization of oscillators 1, as demonstrated in the next section.

2.6 Analysis of Phase Synchronization by Means

of CRPs

In order to show, that the method of CRPs is not appropriate for the analysis of
synchronization of oscillators, we consider two mutually coupled Rössler systems

ẋ1 = −(1 + ν)x2 − x3 + µ(y1 − x1),

ẋ2 = (1 + ν)x1 + 0.15x2,

ẋ3 = 0.2 + x3(x1 − 10),

ẏ1 = −(1 − ν)y2 − y3 + µ(x1 − y1),

ẏ2 = (1 − ν)y1 + 0.15y2,

ẏ3 = 0.2 + y3(y1 − 10), (2.21)

1for a definition of the different kinds of synchronization, see Chapter 4
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where the parameter ν governs the detuning of the frequencies and where the
coupling is diffusive and proportional to the coupling strength µ. The system
is integrated using the Runge-Kutta integrator of fourth order. The integration
step is h = 0.01 and the sampling time s = 20, so that the time interval between
two consecutive points is ∆t = 0.2 s.
We regard the phase synchronized (PS) and non-phase synchronized (non-PS)
regimes. First we compute the CRP between the first components of each Rössler
subsystem for both cases. We rescale the original time series, to have the same
amplitude scale in both signals [82]

x̃i =
xi − x̄

σx
, (2.22)

where x̄ denotes the mean and σx the standard deviation of {xi}N
i=1. Then we use

embedding parameters d = 6 and τ = 8 according to the methods of false nearest
neighbors and first zero of autocorrelation function [29]. We choose the threshold
ε, such that the recurrence rate RR is almost the same for both PS and non-PS
cases in order to compare better the other quantification measures (RR is set to
approximately 3%, following the indications given in [82]). The resulting CRPs
are illustrated in Fig. 2.6. At a first glance it seems that in both plots there are

Figure 2.6: CRPs for the first component of each Rössler subsystem of Eqs. 2.21. a)
µ = 0.01, non-PS, b) µ = 0.04, PS.

lines, which are parallel to the main diagonal. To quantify this visual impression,
we calculate some of the RQA measures. We compute 100 different trajectories
corresponding to 100 different initial conditions for the mutually coupled Rössler
systems, and calculate the mean value and the standard deviation for each mea-
sure.
We see that all computed measures are very similar for the non-PS and PS cases,
and hence they are not appropriate to distinguish between both regimes (Tab. 2.1)
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2. Hence, the CRP method does not seem to be suitable for the detection of small

Measure Non-phase synchronized Phase synchronized

RR 0.0298 ± 0.000138 0.0293 ± 0.000169
DET (lmin = 2) 0.963 ± 0.000188 0.958 ± 0.000303
ENTR(lmin = 2) 0.0461 ± 0.000233 0.0408 ± 0.000203

RATIO 32.346 ± 0.147 32.747 ± 0.180
MAX LINE 146.03 ± 0.585 146.80 ± 0.372

Table 2.1: RQA measures for the CRPs (mean values over 100 different initial condi-
tions and standard deviations) calculated for two coupled Rössler systems.

changes in the coupling strength, and especially the transition from non-PS to
PS, despite the qualitatively different behavior of the coupled systems.
Therefore, we propose in the next chapter a new approach to calculate multivari-
ate recurrence plots, that avoids all the above mentioned problems. Moreover,
our new method enables to estimate invariants of the dynamics and information
measures, analogously to the RPs.

2We do not calculate the TREND, as it does not make sense for this system, since the
percentage of recurrence points in dependence on the distance to the main diagonal oscillates
periodically.



Chapter 3

Joint Recurrences

As shown in Sec. 2.5, the definition of CRPs (Eq. 2.20) has some drawbacks. On
the other hand, the method of RPs has been applied very successfully in many
different fields [45, 50, 49, 98]. Hence, the following question arises:
How can we exploit the concept of recurrence in phase space to analyze the rela-

tionship between interacting systems?

The new definition of multivariate RPs which is proposed in this chapter, is based
on the idea of joint recurrence. That means, that the probability that both
systems recur simultaneously to the neighborhood of a formerly visited
point in their respective phase space is considered. We demonstrate that by
this new definition all problems mentioned in Sec. 2.5 are overcome. Moreover, in
Chap. 4 it will be shown that the new method is also appropriate for the analysis
of complex synchronization, in contrast to the one given by (Eq. 2.20).
The idea of joint recurrence can be easily introduced based on the concept of
the mutual information. Hence, I recall in the next section the definition of the
cross mutual information as a motivation for the new approach to compute and
analyze multivariate RPs.

3.1 Mutual Information by Means of Recurrences

The mutual information quantifies the amount of information that we obtain
from the measurement of one variable on another. Hence, it has become a
widely applied measure to quantify linear and nonlinear dependencies within
or between time series (auto respectively cross mutual information) [69]. Sup-
pose, that we have two dynamical systems represented by the orbits xi and yi,
with i = 1, . . . , N . We can associate both systems with probability distributions
{pm}M

m=1 and {ql}L
l=1, where pm (respectively ql) denotes the probability that the

system is located in the box m of the partition of the phase space (respectively
the box l). Furthermore, we can assign to both systems the joint probability
distribution {pm,l}M,L

m,l=1 [10]. Then, the generalized mutual information of second

19
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order [68] is given by

I2(x,y) = H2(x) +H2(y) −H2(x,y), (3.1)

where H2 denotes the Rényi information of second order [10], which is defined by

H2(x) = − log
M∑

m=1

p2
m. (3.2)

Substituting (3.2) in Eq. (3.1) we obtain

I2(x,y) = − log
M∑

m=1

p2
m − log

N∑

l=1

q2
l + log

M,L∑

m,l=1

p2
m,l. (3.3)

Analogously to the considerations in Sec. 2.3, one can estimate H2 by means of
the recurrence matrix in the following way:
Due to the ergodicity of the system, we can state first that

M∑

m=1

p2
m =

1

N

N∑

t=1

pm(t),

where pm(t) represents the probability of the system occupying the box m of the
partition at time t. Furthermore, we can approximate pm(t) by

pm(t) '
1

N

N∑

s=1

Θ(εx − ||xt − xs||) =
1

N

N∑

s=1

Rx

t,s,

where in spite of considering a fixed partition of the phase space, we allow the
”boxes” to move along the trajectory: each point of the orbit is the center of one
box, and therefore, the boxes are allowed to overlap.
Hence, we can claim that

H2(x) ' − log
1

N2

N∑

t,s=1

Rx

t,s, (3.4)

i. e. that it is possible to estimate the Rényi information of second order by
means of RPs. But in order to compute the mutual information I2 we also
have to estimate the joint Rényi information H2(x,y). Analogously to the Rényi
information of a single system [91], we state

M,L∑

m,l=1

p2
m,l =

1

N

N∑

t=1

pm(t),l(t),
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where pm(t),l(t) is the probability that the system x is situated in the box m at
time t and the system y is located in the box l also at time t. Furthermore, we
can make the following approximation:

pm(t),l(t) '
1

N

N∑

s=1

Θ(εx − ||xt − xs||)Θ(εy − ||yt − ys||) =
1

N

N∑

s=1

Rx

t,sR
y

t,s,

where Rx

t,s and Ry

t,s represent the single recurrence matrices of both systems. As
we compute a joint probability, both conditions ||xt−xs|| < εx and ||yt−ys|| < εy

must be fulfilled simultaneously, and this is expressed by the multiplication of
the Heaviside functions. Hence, we find

H2(x,y) ' − log
1

N2

N∑

t,s=1

Rx

t,sR
y

t,s. (3.5)

Substituting Eq. (3.4) and Eq. (3.5) in Eq. (3.3), we obtain

Î2(x,y) = − log
1

N2

N∑

t,s=1

Rx

t,s − log
1

N2

N∑

t,s=1

Ry

t,s + log
1

N2

N∑

t,s=1

Rx

t,sR
y

t,s. (3.6)

Analogously, we can estimate the auto-mutual information by means of the recur-
rence matrix. The auto-mutual information quantifies the amount of information
about x(t) than can be obtained from x(t + τ), and is defined as

I2(x(t),x(t + τ)) = 2H2(x) −H2(x(t),x(t + τ)). (3.7)

Hence, the estimator of the auto-mutual information by means of recurrences is
given by

Î2(x(t),x(t+ τ)) = −2 log
1

N2

N∑

t,s=1

Rx

t,s + log
1

N2

N∑

t,s=1

Rx

t,sR
x

t+τ,s+τ . (3.8)

This measure for the Rössler system with standard parameters (Eq. 2.19) is rep-
resented in Fig. 3.1. The estimation of I2 by means of RPs is independent of
the norm used to compute the distances (solid line), whereas the estimation of I2

by the usual algorithm (e. g. presented in [29]) depends on the norm used: the
Euclidean norm corresponds to the dashed line and the maximum norm to the
solid line.
Moreover, this leads to the introduction of the delayed cross mutual information

Î2(x(t),y(t+τ)) = − log
1

N2

N∑

t,s=1

Rx

t,s− log
1

N2

N∑

t,s=1

Ry

t,s +log
1

N2

N∑

t,s=1

Rx

t,sR
y

t+τ,s+τ ,

(3.9)
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Figure 3.1: (Auto)-mutual information of the Rössler system with standard parameters
(Eq. 2.19). The estimation of I2 by means of RPs is independent of the norm used to
compute the distances (solid line), whereas the estimation of I2 by the usual algorithm
(e. g. presented in [29]) depends on the norm used: Euclidean norm (dashed line),
maximum norm (solid line).

which quantifies the amount of information that we obtain from the measurement
of one variable at time t on another variable at time t + τ .
In summary, we have shown that it is possible to estimate the mutual informa-
tion (auto, cross and cross-delayed) by means of the recurrence matrices of the
corresponding systems.

3.2 Joint Recurrence Matrix

We have seen in Sec. 3.1 that in order to estimate the mutual information it
is necessary to consider the two matrices Rx

i,j and Ry

i,j separately, i. e. we do
not mix the phase spaces of x and y, in contrast to the definition of the CRP
(Eq. 2.20). We rather extend the phase space to Rd1+d2 , where d1 and d2 are the
phase space dimensions of the corresponding (sub)systems, which are in general
different. Furthermore, we consider a different threshold for each system (εx

and εy), so that we can apply the criteria to choose them separately [90, 91, 108],
respecting the natural measure of both systems. Hence, it is intuitive to introduce
the following joint recurrence matrix

JRx,y
i,j = Θ (εx − ||xi − xj||)Θ (εy − ||yi − yj||) , i, j = 1, . . . , N, (3.10)
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i. e.

JRx,y
i,j =

{
1, if ||xi − xj|| < εx and ||yi − yj|| < εy

0, else.

The graphical representation of the matrix JRx,y
i,j is called Joint Recurrence

Plot (JRP). Note, that the definition (Eq. 2.1) of an RP is a special case of the
definition of Eq. 3.10 if we have only one system, which is an important advan-
tage with respect to CRPs (Eq. 2.20).
The problems mentioned in Sec. 2.5 are also overcome: if both systems have dif-
ferent dimensions d1 and d2, the joint recurrence is still well defined, as well as in
the case of having different physical units of each component. Additionally, the
JRP is invariant under permutation of the coordinates, and the lines of slope 1
are still directly related to the predictability of the system.
In this approach a recurrence takes place if one point of the trajectory xj for
j = 1, 2, . . . returns to the neighborhood of a former point xi in phase space,
and simultaneously one point of the trajectory yj for j = 1, 2, . . . returns to
the neighborhood of a former point yi. That means, that we consider the joint
probability that both recurrences happen simultaneously in their respective (sub-
)phase spaces. In contrast, in CRPs one cannot interpret the matrix CRi,j as a
”real” recurrence in the physical sense.
A more direct comparison between CRPs and JPRs is illustrated in Fig. 3.2: in
(a) and (b) the RPs of two mutually coupled Rössler systems are represented
(Eqs. 2.21). There, the coupling strength between both systems is still not large
enough to yield synchronization (see Chap. 4). In Fig. 3.2 c the JRP of the whole
system is represented. It is almost ”empty”, except for the main diagonal. This
is because both oscillators are not in PS, and hence the probability of having
a joint recurrence is rather small. In Fig. 3.2 d the CRP of both oscillators is
represented. By means of this plot, it is much harder to draw some conclusions
about the interaction between both oscillators, because there is almost no dif-
ference between the CRP for the oscillators in PS and the CRP for the non-PS
regime (see Sec. 2.6).

Moreover, one can easily consider the delayed version of the joint recurrence
matrix

JRx,y
i,j (τ) = Θ (εx − ||xi − xj||)Θ (εy − ||yi+τ − yj+τ ||) , i, j = 1, . . . , N − τ,

(3.11)
which can be useful for the analysis of interacting delayed systems (and also for
the study of lag synchronization [75, 83]), or even for systems with feedback.

3.3 Quantification of Joint Recurrence Plots

Analogously to Sec. 2.3 and 3.1, we can estimate the joint Rényi entropy of second
order if we consider the joint probability of recurrence instead of the probability
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Figure 3.2: a) and b) RPs of two mutually coupled Rössler oscillators (Eqs. 2.21). c)
JRP of both oscillators, d) CRP of both oscillators.

of recurrence of a single system. This is an extension of the estimator presented
in [91, 92], which is useful for the analysis of two or more interacting systems, as
will be shown in Chap. 4.
The joint Rényi entropy of second order is defined as

JK2 = − lim
τ→0

lim
ε→0

lim
l→∞

1

lτ
log

∑

i1,...,il,j1,...,jl

p2(i1, . . . , il, j1, . . . , jl), (3.12)

where p(i1, i2, . . . , il, j1, j2, . . . , jl) is the joint probability that x(τ) is in box i1,
x(2τ) is in box i2, ..., x(lτ) is in box il and simultaneously y(τ) is in box j1,
y(2τ) is in box j2, ..., and y(lτ) is in box jl. Similarly to Sec. 2.3, using the
ergodicity of the system, we can state

∑

i1,...,il,j1,...,jl

p2(i1, . . . , il, j1, . . . , jl) =
1

N

N∑

t=1

pt(i1, . . . , il, j1, . . . , jl)
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On the other hand, we can make the following approximation

pt(i1, . . . , il, j1, . . . , jl) '
1

N

N∑

s=1

l−1∏

m=0

Θ(εx−||xt+m−xs+m||)Θ(εy−||yt+m−ys+m||).

Then, substituting this expression in Eq. 3.12, we get

ĴK2(ε
x, εy, l) = − 1

lτ
log

(
1

N2

N∑

t,s=1

l−1∏

m=0

JRt+m,s+m

)

︸ ︷︷ ︸
∗

. (3.13)

Note, that ∗ is the cumulative distribution of diagonals P c
εx,εy(l) in the JRP, i.e the

probability to find a diagonal of at least length l in the JRP. Hence, representing
it logarithmically versus l, one obtains a straight line for small thresholds εx, εy

and long lines, whose slope is equal the joint Rényi entropy multiplied with the
sampling time interval.
Another measure for the quantification of JRPs is related to the recurrence rate
RR or probability of occurrence of a black point in an RP. After choosing the
thresholds εx and εy for the RPs of both subsystems so, that RRx = RRy = RR
(see algorithm presented in Sec. 2.3), we plot RRx,y versus RR. If there is no
statistical dependence between x and y, then one can calculate the probability
to find a recurrence point in the JRP as the product of the probability to find a
recurrence point in the RP of x with the probability to find a recurrence point
in the RP of y

RRx,y = RRxRRy = RR2, if x and y are independent. (3.14)

The opposite case is that x depends strongly on y. Suppose that x and y are
identical, i. e. xi = yi ∀i. In this case, we obviously have

RRx,y = RRx = RRy = RR if x and y are completely synchronized. (3.15)

If the systems are anticorrelated we expect a curve that is below the parabola
given by Eq. (3.14). Then the plot of RRx,y versus RR yields a first insight into
the statistical dependence between x and y.

3.4 Application of the Quantification Measures

of JRPs

We consider again two mutually coupled Rössler systems (Eqs. 2.21) to show
the practical application of the theory presented in the upper sections. First,
in order to estimate the joint Rényi entropy, we compute the distribution of
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diagonal lines in the JRP for 99 different values of εx and εy and using 10, 000
data points. Analogously to Sec. 2.3.1, we use the algorithm to compute the
thresholds corresponding to the fixed values of RR, varying from 0.01 to 0.99.
In this way, we do not have to take the different amplitudes of both oscillators
into account and we are sure, that each pair of (εx and εy) corresponds to a very
similar partition of each sub-”phase space”.
The distribution of diagonals in the JRP for the non-PS (µ = 0.005, ν = 0.015
in Eqs. 2.21) and the PS case (µ = 0.045, ν = 0.015 in Eqs. 2.21) are represented
logarithmically versus the length in Fig. 3.3 a, respectively 3.4 a. We observe two
main slopes. The first slope for small lengths has the same origin than the one
in the distribution of diagonals of a single RP (Sec. 2.3.1). As the joint Rényi
entropy is defined for large lengths (see Eq. 3.12), we must concentrate on the
second slope in order to estimate JK2.
The estimator of JK2 is represented in Figs. 3.3 b and 3.4 b, respectively. From
Fig. 3.3 b we estimate ĴK2 = 0.1798± 0.004 nats/s and from Fig. 3.4 b, we can

estimate ĴK2 = 0.0838 ± 0.005 nats/s. Hence, the joint Rényi entropy for the
non-PS case is larger than in the case of PS. This is expected, because if both
subsystems are synchronized, it is easier to predict the whole system than if they
are not in PS.

Figure 3.3: (a) Distribution of diagonal lines for two coupled Rössler systems
(Eqs. 2.21) in non-PS regime. The different lines correspond to different RR, vary-
ing from 0.01 to 0.99 (only each third line is represented). (b) Estimator of K2 in
dependence on RR. We see a pronounced plateau from RR = 0.11 to RR = 0.63,
approximately.

Finally, we calculate the recurrence rate of each subsystem given by Eqs. 2.21
(RRx and RRy) in dependence on the recurrence rate of the whole system RRx,y,
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Figure 3.4: (a) Distribution of diagonal lines for two coupled Rössler systems
(Eqs. 2.21) in PS regime. The different lines correspond to different RR, varying
from 0.01 to 0.99. (b) Estimator of K2 in dependence on RR. We see a plateau from
RR = 0.06 to RR = 0.7, approximately.

using RRx = RRy = RR. Fig. 3.5 shows RRx,y versus RR for the PS regime
(c)(µ = 0.04, ν = 0.015) and non-PS regime (b) (µ = 0.01, ν = 0.015), as well
as in the non-coupled case (a) (µ = 0.0, ν = 0.015). For the PS regime, the
curve RRx,y versus RR is between the parabola RRx,y = RR2 (which indicates
independency) and the main diagonal (which indicates ”total” dependence) (see
Fig. 3.5 c). Hence, this measure reflects the dependency between both oscilla-
tors when they undergo PS. In the non-coupled case, as well as in non-PS, the
representation of the recurrence rate corresponds to the parabola RRx,y = RR2

(Fig. 3.5 a, b). This measure does not differentiate between independent oscilla-
tors and weakly coupled oscillators, that are not in PS yet. Hence, this measure
detects rather well the onset of PS.
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Figure 3.5: RRx,y versus RR for x,y non-coupled (a), non-phase synchronized (b)
and phase synchronized (c) two coupled Rössler systems (Eq. 2.21).



Chapter 4

Joint Entropy and
Synchronization

In the last chapter, the Joint Recurrence Plots (JRPs) have been introduced and
it has been shown that they have some advantages with respect to the formerly
considered Cross Recurrence Plots (CRPs) for the analysis of the relationship
between two or more interacting systems. This was illustrated for the example
of two mutually coupled Rössler systems (Eqs. 2.21), which undergo phase syn-
chronization when the coupling strength is sufficiently increased (Secs. 2.6 and
3.4). In Fig. 3.2 we observe that JRPs allow to visually detect synchronization
between both oscillators, whereas it is much harder to recognize PS by means
of CRPs. Furthermore, by means of the joint Rényi entropy JK2, we can also
quantify the interaction between both oscillators (Sec. 3.4).
Hence, we have seen by the examples presented before, that there exists a rela-
tionship between joint recurrences and the synchronization of oscillators.
On the other hand, it is well known, that the synchronization of oscillators can be
characterized by means of the Lyapunov spectrum [66]. Moreover, there exists a
formal relationship between K2 and the Lyapunov exponents: Ruelle has shown
in [77], that in the general case, the following relationship holds,

KKS ≤
∑

λi>0

λi, (4.1)

where λi denote the Lyapunov exponents and KKS is the Kolmogorov-Sinai en-
tropy. That means, the sum of the positive Lyapunov exponents is an upper
bound of the Kolmogorov-Sinai entropy. Beyond this, the Rényi entropy of first
order K1 coincides with the Kolmogorov-Sinai entropy [10] and furthermore, it
can be proven for the Rényi entropies [10], that

Kβ ≤ Kβ′, with β ′ ≤ β. (4.2)

Hence, we can state that

K2 ≤
∑

λi>0

λi. (4.3)

29
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As one can consider two coupled systems as a single whole system, the joint
Rényi entropy corresponds to the ”single” Rényi entropy of the whole system.
Therefore, the upper formula is also valid for JK2, considering the sum over the
positive Lyapunov exponents of both subsystems.
Due to these two aspects, we concentrate in this chapter on the characterization of
synchronization of complex oscillators by means of K2. The algorithm presented
in Sec. 3.3 will be automatized, so that we can estimate JK2 at each point of the
parameter space. Moreover, we compare the so obtained results with the ones
obtained by means of the Lyapunov exponents and identify new transitions to
phase and lag synchronization.
But first of all, a short introduction to the synchronization of chaotic oscillators
is given.

4.1 Synchronization of Chaotic Systems

As mentioned in Chap. 1, chaotic systems defy synchronization due to the high
sensitivity to slightly different initial conditions. However, it has been demon-
strated that this kind of systems are able to synchronize.
The first studies about synchronization of chaotic systems deal with complete
synchronization (CS). In this case, coupled identical chaotic systems which
start at different initial conditions, but driven by the same forcing, evolve on the
same trajectory [20, 2, 61]. There are different coupling schemes that lead to CS,
e. g. the Pecora and Carroll method, the active-passive decomposition, diffusive
bidirectional coupling, etc. The appearance and robustness of synchronization
by these coupling schemes has been analyzed [102]. CS is associated with the
transition of the largest conditional Lyapunov exponent 1 of the synchronization
manifold (x = x̃, with x̃ denoting a copy of x with the same forcing but starting
at different initial conditions) from positive to negative values.
However, under experimental conditions it is difficult to have two fully identical
systems. Usually, there is some mismatch between the parameters of the sys-
tems under consideration. Hence, synchronization between nonidentical systems
has been studied. Starting with two uncoupled nonidentical oscillators and in-
creasing the coupling strength, a rather weakly degree of synchronization may
occur, where the phases and frequencies of the chaotic oscillators become locked,
whereas their amplitudes remain almost uncorrelated. This is the so called phase
synchronization (PS). In this case, the dynamics of the coupled systems are
restricted to a manifold which is in general very complicated. There are several
approaches to calculate the phase of chaotic oscillators (see Sec. 5.1). Further-
more, the phase of a chaotic oscillator is closely related to the zero Lyapunov
exponent in the autonomous chaotic system. The zero Lyapunov exponent cor-

1The conditional or transversal Lyapunov exponents are the Lyapunov exponents of the
response system under the action of the driver system.
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responds to the translation along the chaotic trajectory. Hence, a perturbation
in this direction neither decays nor grows. This property makes the adjustment
of the phases of two chaotic oscillators (or of one oscillator and the force) possi-
ble. If two chaotic oscillators are not coupled, the two zero Lyapunov exponents
are linked to the individual phases. Increasing the coupling strength, PS can be
manifested by the transition of one of the zero Lyapunov exponents to negative
values, indicating the establishment of a relationship between the phases [66].
Moreover, PS of chaotic systems can be studied in terms of the unstable periodic
orbits (UPOs) embedded in the attractor [64, 65]. An UPO of period N has a
”real” period of T ' T0N , where T0 is the average return time of the period
one periodic orbit. For different periodic orbits, T0 fluctuates around the average
return time of the chaotic oscillations. Due to these fluctuations, each periodic
orbit has its individual phase locking region (Arnold tongue [40]) under the peri-
odic external forcing. Hence, the region of phase synchronization is given by the
overlapping region of the Arnold tongues of all UPOs [65, 13].
Furthermore, the distribution of the time scales of the system under consideration
plays an important role in the synchronization behavior. For example, the varia-
tion of the return times (see [66] for a formal definition) or ”periods” of rotation
for the chaotic Rössler oscillator with standard parameters (Eq. 2.19) is relatively
small. Hence, it can be easily synchronized by an external weak forcing with a
period close to the average return time. In contrast, the Lorenz system [111] has
a broad distribution of time scales, which is reflected in the broad distribution
of frequencies of different UPOs [105]. Due to this, the phase locking regions of
the UPOs do not overlap to produce a full synchronization region of the chaotic
attractor. Therefore, an external signal with a given frequency is not able to
entrain all the characteristic time scales of the system. As a consequence, phase
slips occur and imperfect synchronization (IS) is observed.
Beyond this, the question arises what happens when the coupling strength be-
tween nonidentical chaotic oscillators is further increased. It has been demon-
strated that a strong dependence between the amplitudes is then established,
so that the states of both oscillators are almost identical but shifted in time,
i. e. x(t) ' y(t + τ) [75]. This regime is called lag synchronization (LS).
The transition to LS has also been related to the transition of a positive Lya-
punov exponent to negative values. Actually, LS sets in after the zero crossing of
the Lyapunov exponent. In the interval between the transition of the Lyapunov
exponent and the onset of LS, intermittent lag synchronization (ILS) is ob-
served. There, LS is interrupted by intermittent bursts of large synchronization
errors e(t) = x(t)− y(t+ τ) [75]. After the onset of LS, a further increase of the
coupling strength leads to a decrease of the time lag τ between the trajectories
of the oscillators. Hence, the oscillators tend to be almost synchronized, i.e
x(t) ' y(t).
The above description of synchronization transitions and their connection with
the changes in the Lyapunov spectrum is valid for phase coherent oscillators,
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for which a phase can be defined as a monotonously increasing function of time.
However, for non-phase coherent chaotic oscillators, this definition may not be
possible and the crossing of the zero Lyapunov exponent to negative values may
not be an indicator for the onset of PS [13]. We will concentrate on this problem
in Chap. 5.
The question about synchronization of coupled systems which are essentially
different has been addressed first in [2, 78]. In this case, there is in general no
trivial manifold in the phase space which attracts the systems’ trajectories. It has
been shown, that these systems can synchronize in a more general way, namely
y = ψ(x), where ψ is a transformation which maps asymptotically the trajecto-
ries of x into the ones of the attractor y. This kind of synchronization is called
generalized synchronization (GS). The properties of the function ψ depend
on the features of the systems x and y, as well as on the attraction properties of
the synchronization manifold y = ψ(x) [60]. In most cases, evidence of GS has
been provided for unidirectional coupling schemes. However, examples of bidirec-
tionally coupled systems that undergo GS are e. g. given in [36, 12]. Kocarev and
Parlitz have given the necessary and sufficient conditions for the occurrence of GS
in unidirectionally coupled systems [38]. As in the case of CS, the notion of GS is
equivalent to the asymptotic stability of the response system. Furthermore, there
exists a weaker notion of GS, in which the drive and response are not related by
a function. In this case GS occurs if the response system is asymptotically stable
with respect to the driving signal. The difference with respect to the former case,
is that it is not assumed that the complete synchronization manifold is contained
in the basin of synchronization. Hence, the case of subharmonic entrainment of
periodic orbits where several basins coexist is included. For example, if a periodic
orbit of the drive entrains a stable periodic orbit of the response with twice its
period, then any point of the attractor of the drive is mapped to two points on
the response orbit. In this case, the transformation ψ is not a function [60].
Moreover, GS in structurally nonequivalent systems, i. e. systems generating
chaotic attractors with high and different fractal dimensions has been reported
in [12]. There, GS was exemplified for two symmetrically coupled Mackey-Glass
systems with two different delays, which generate high-dimensional chaotic sig-
nals.
CS and GS have been demonstrated in laboratory experiments for electronic cir-
cuits [61, 17, 34] and laser systems [101, 54]. Furthermore, CS and GS have found
applications for the the design of communication devices [35, 102, 15, 37, 59] and
model verification and parameter estimations from time series [14, 57]. PS of
chaotic oscillators has been demonstrated in plasmas [95], lasers [3], electrochem-
ical oscillators [30, 31, 32], etc. Synchronization has been studied also in nature.
For example, the dynamics of the cardiorespiratory system [79], an extended
ecological system [11], and the electroencephalographic activity of Parkinsonian
patients display synchronization features [88].
In the next sections we characterize the transitions to PS and LS by means of
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the joint Rényi entropy in the example of two coupled Rössler systems.

4.2 Detection of Synchronization Transitions by

Means of the Joint Entropy

In this section we estimate JK2 by means of JRPs for the prototypical chaotic
case of two mutually coupled Rössler oscillators (Eqs. 2.21). We analyze the range
of parameters ν ∈ [−0.04, 0.04] and µ ∈ [0.0, 0.12], for which the two oscillators
undergo transitions to phase synchronization.
In Fig. 4.1 the difference of the mean frequencies ∆Ω = Ω1 − Ω2 of the two
oscillators shows the well-known Arnold tongue 2. Now we estimate the JK2
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Figure 4.1: Difference |∆Ω| between the mean frequencies of the two Rössler oscillators
(Eq.(2.21)) in dependence on the frequency mismatch and coupling strength.

based on JRPs in the same parameter range (for a detailed description of the

2the mean frequencies Ω1 and Ω2 were calculated as proposed in [66]
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computation, see the Appendix). The results, represented in Fig. 4.2, also reflect
the Arnold tongue, but they exhibit more details than Fig. 4.1:

Figure 4.2: Joint Rényi entropy ĴK2 of the two Rössler oscillators (Eqs. 2.21) in
dependence on the frequency mismatch and coupling strength.

• First, we note two ”borders” in the upper part of Fig. 4.2 (µ > 0.04):
the outer ones correspond to the border of the Arnold tongue, i. e. inside
this border the oscillators are in PS, whereas outside they are not. Both
borders have very low values of ĴK2, i. e. the behavior of the system is
rather regular there, even periodic in small regions on both borders. This
is a remarkable fact, because it means that for relatively high coupling
strengths the transition to PS is a chaos-period-chaos one, since inside the
tongue ĴK2 > 0, indicating a chaotic regime.

• Inside the Arnold tongue, for coupling strengths µ between approximately
0.025 and 0.04, we find a region (which looks like two eyes), where the value
of K̂2 is (almost) 0, i. e. the region is periodic or quasiperiodic.
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• For µ ≥ 0.03 the region inside the Arnold tongue is ”more chaotic” (larger
K̂2) than outside the tongue. This is surprising, as one would expect that if
both oscillators are synchronized, the behavior of the whole system becomes
more and more regular for increasing coupling.

Hence, we have found new characteristics of the transition to PS by means of
JK2, which have to be investigated from a theoretical point of view.

4.3 Comparison between the Sum of the Posi-

tive Lyapunov Exponents and JK2

In order to validate the results obtained in the last section, we calculate the
Lyapunov spectrum of the whole system based on Eqs. 2.21, i. e. it is not
estimated from the time series, but using the equations. As JK2 is bounded
from above by the sum of the positive Lyapunov exponents, we should obtain
qualitatively the same structures plotting

∑
λi>0 λi in the considered parameter

space as in Fig. 4.2. Indeed, the structures in Fig. 4.3 are reproduced in Fig. 4.2.
It is noteworthy, that K2 was estimated from time series with 10, 000 data points
and a sampling rate corresponding to 30 data points per oscillation (see Appendix
for the details of the computation), whereas for the computation of the sum of
the positive Lyapunov exponents, Eqs. 2.21 were used. As we are interested
in a method for data analysis, where the equations governing the system are
usually not known, the technique to estimate the predictability of the system
in parameter space based on JRPs is quite appropriate and yields robust and
reliable results.
Note that one can observe one qualitative difference between Fig. 4.2 and Fig. 4.3:
for µ ∈ [0, 0.006] one cannot distinguish the tip of the Arnold tongue only by
considering the sum of the positive Lyapunov exponents (see Fig. 4.5), whereas

taking into account ĴK2, one can (Fig. 4.4). This is due to the fact, that the
relationship K2 =

∑
i λ

+
i holds only for hyperbolic systems but the 6-dimensional

system (Eq. (2.21)) is not a hyperbolic one. For non-hyperbolic systems, K2 ≤∑
i λ

+
i holds [77]. This shows that JK2 can provide important complementary

information to the sum of the positive Lyapunov exponents.

In the next section the transitions to PS and LS are investigated by the
transitions in the Lyapunov spectrum.

4.4 Different Types of Transitions to PS

By means of joint recurrences we have detected different transitions to PS for
the two coupled Rössler systems in dependence on the coupling strength and fre-
quency mismatch (Fig. 4.2).
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Figure 4.3: Sum of the positive Lyapunov exponents of the two Rössler oscillators
(Eqs. 2.21) in dependence on the frequency mismatch and coupling strength.

In the literature, the transitions between different types of synchronization have
been related to the changes in the Lyapunov spectrum [75, 53]: for rather low val-
ues of the coupling strength, one has the following configuration: {λ1 > 0, λ2 >
0, λ3 ∼ 0, λ4 ∼ 0, λ5 < 0, λ6 < 0}. The two zero Lyapunov exponents correspond
to the two independent phases; although there is a coupling between both oscil-
lators, both phases can be shifted [66]. Increasing the coupling strength µ, λ4

becomes negative, indicating the transition to PS. If one continues to increase
µ, then λ2 ∼ 0 and λ3 < 0, indicating that the amplitudes become correlated.
This has been interpreted as generalized synchronization (GS) in [53]. Indeed,
two nonidentical chaotic oscillators bidirectionally coupled undergo transitions
from phase to lag synchronization (LS). Furthermore, LS can be considered as
an special case of GS [75].
In order to relate these results with ours obtained by means of JK2 in the case
of Eqs. (2.21), we encode the different configurations of the Lyapunov spectrum
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Figure 4.4: Magnification of the joint Rényi entropy K̂2 of the two Rössler oscillators
(Eqs. 2.21) in dependence on the frequency mismatch for low values of the coupling
strength.

in colors (Fig. 4.6):

• Dark blue: {λ1 > 0, λ2 > 0, λ3 ∼ 0, λ4 ∼ 0}, which corresponds to non-PS.

• Light blue: {λ1 > 0, λ2 > 0, λ3 ∼ 0, λ4 < 0}, which corresponds to PS.

• Yellow: {λ1 > 0, λ2 ∼ 0, λ3 < 0, λ4 < 0}, which corresponds to strong
correlated amplitudes.

• Red: {λ1 ∼ 0, λ2 < 0, λ3 < 0, λ4 < 0}, which corresponds to periodicity.

The conclusions we can draw from Fig.4.6 are:

1. For 0.031 < µ < 0.055 the transition to PS is not reflected any more by the
change of λ4 to negative values. In this region λ4 is negative also outside
the Arnold tongue (we take Fig. 4.1 as reference). This means, that for
these values of µ, the phases of both subsystems are not independent any
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Figure 4.5: Magnification of the sum of the positive Lyapunov exponents of the two
Rössler oscillators (Eqs. 2.21) in dependence on the frequency mismatch for low values
of the coupling strength.

more, even for large frequency mismatch. However this dependency is still
weak, so that both subsystems are not in PS for large frequency mismatch.

2. For 0.055 < µ < 0.1 we observe that only one Lyapunov exponent remains
positive for large values of the frequency mismatch. This happens outside
and on the edge of the Arnold tongue. Decreasing the frequency mismatch
(moving in the horizontal direction towards the middle), the correlation
between the amplitudes decreases and inside the tongue we only have the
configuration of the Lyapunov exponents corresponding to PS. This is in
accordance with the upper part of Figs. 4.2 and 4.3, where inside the tongue,
the whole system is more chaotic than outside.

3. We see two ”borders” of the Arnold tongue (red points): the inner one is
nearly periodic and the outer one is exactly periodic only for µ larger than
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Figure 4.6: Different configurations of the Lyapunov spectrum are coded with different
colors: dark blue: {λ1 > 0, λ2 > 0, λ3 ∼ 0, λ4 ∼ 0}, light blue: {λ1 > 0, λ2 > 0, λ3 ∼
0, λ4 < 0}, yellow: {λ1 > 0, λ2 ∼ 0, λ3 < 0, λ4 < 0} and red: {λ1 ∼ 0, λ2 < 0, λ3 <

0, λ4 < 0}.

about 0.8. This also in accordance with the results of Fig. 4.2.

4. We recognize inside the tongue for µ ∼ 0.03 the “eyes”, also seen in Figs. 4.2
and 4.3. The color there does not correspond to the periodic regime (red).
This might be due to the finite sampling rate or to quasiperiodicity. How-
ever, we know from Fig. 4.3 that the sum of the positive Lyapunov expo-
nents is very small there, and hence it is almost periodic.

4.5 Transition to Phase Synchronization for Large

Frequency Mismatch

In Fig. 4.2 we have not distinguished between LS and states with the following
configuration: {λ1 > 0, λ2 ∼ 0, λ3 < 0, λ4 < 0} (yellow). In order to do so, the
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following similarity index for LS can be calculated in the parameter space [75]:

S2(τ) =
< [x1(t + τ) − y1(t)]

2 >

[< x2
1(t) >< y2

1(t) >]1/2
(4.4)

and search for its minimum σ = minτS(τ). If the signals are in LS, then the
function S(τ) almost vanishes for a τ different from zero [75]. This similarity in-
dex is shown in Fig. 4.7 for the considered parameter space. We see, that outside
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Figure 4.7: Index σ for LS. Values greater than 0.1 are coded with dark red.

the Arnold tongue, there is no LS. Only in the upper part of the Arnold tongue
and on the inner “border”, we recognize very small values of σ, which indicate
LS (dark blue). Hence, for large frequency mismatch ( approximately |ν| > 0.03)
there is a direct transition to LS (imagine a vertical section in Fig. 4.6 for a large
value of |ν|). That means that the amplitudes of the signals become more and
more correlated with increasing coupling strength (transition from dark blue to
light blue to yellow), without becoming phase synchronized, until they become
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LS.
In order to analyze the correlations in the amplitudes in this region of the pa-
rameter space, we compute the amplitude of each oscillator in the following way:
Ax(t) = (x1(t)

2 + x2(t)
2)1/2, and analogously for Ay, using the coordinates of

Eqs. 2.21. Then we fix the frequency mismatch at ν = −0.04 and take three
different values of the coupling strength: µ = 0.01 (dark blue), µ = 0.04 (light
blue) and µ = 0.07 (yellow)3. The scatter plots Ax versus Ay for the different
coupling strengths are represented in Fig. 4.8. We see that for coupling µ = 0.01

Figure 4.8: Scatter plot of Ax versus Ay for ν = −0.04 and three different coupling
strengths: µ = 0.01 (a), µ = 0.04 (b) and µ = 0.07 (c) (Eqs. 2.21).

the amplitudes are almost uncorrelated. For µ = 0.04 a certain correlation can
be seen, and for µ = 0.07 we observe that the points are accumulated near the
diagonal, indicating a strong correlation of the amplitudes Ax and Ay. The cross
correlation coefficient c =< (Ax(t)− < Ax >)(Ay− < Ay >) > /σ1σ2 between
both amplitudes is summarized in Tab. 4.1 for the three different values of µ.
We clearly see, that for µ = 0.07 the correlation between the amplitudes of both
oscillators is rather strong, although they are not in PS.

3these colors refer to Fig. 4.6
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µ c

0.01 0.048
0.04 0.053
0.07 0.478

Table 4.1: Cross correlation c of the amplitudes Ax and Ay for different values of
the coupling strength µ.

4.6 Discussion

In this chapter we have estimated the joint Rényi entropy of second order JK2

based on the joint recurrence matrix introduced in Chap. 3 for the paradigmatic
system of two bidirectionally coupled Rössler oscillators (Eqs. 2.21). We have de-
tected three different types of transitions to phase synchronization (see Sec. 4.2).
To validate this result, we have compared the estimated JK2 with the sum of the
positive Lyapunov exponents. Qualitatively, we have obtained the same struc-
tures in the parameter space. However, for rather small coupling strengths, JK2

can detect, due to the nonhyperbolicity of the considered system, the transition
to PS, whereas the sum of the positive Lyapunov exponents cannot. Hence, the
estimate of JK2 by means of JRPs is a powerful tool for the analysis of the mean
predictability of dynamical systems, especially when no model equations of the
underlying system are available.
Moreover, we have calculated the Lyapunov spectrum {λi} for the whole range
of parameters considered. Coding the different configurations of {λi} with dif-
ferent colors, we have seen that for intermediate coupling strengths, outside the
Arnold tongue one zero Lyapunov exponent has passed to negative values. That
means, in this range of parameters the phases become already weakly correlated,
although they are not locked. Furthermore, the transition to synchronization for
large frequency mismatch goes directly from non-synchronized to LS. The am-
plitudes of both oscillators become more and more correlated, without becoming
phase synchronized, until LS sets on. These findings challenge for an extension
of the theory of complex synchronization.



Chapter 5

Recurrence and Synchronization

In Chap. 4 we have established a relationship between the concept of recurrence
in phase space and the synchronization of chaotic oscillators by means of the joint
Rényi entropy JK2 estimated from JPRs.
However, the computation of ĴK2 (Eq. 3.12) yields only valuable information,
when it is possible to compare the obtained result with different coupling strengths
or different natural frequencies of the oscillators (the so called ”active exper-
iments” [66]). Therefore, the characterization of synchronization by means of

ĴK2 is of theoretical interest but not the most appropriate one if only two exper-
imental time series are available, from which one wants to determine the degree
of synchronization.
Hence, in this chapter four new indices for PS and GS are introduced, which
make use of the link between recurrence in phase space and synchronization in
a more pragmatic way. They indicate rather well the onset of synchronization
and hence, they are appropriate test statistics for the performance of a hypothesis
test. On one hand, the establishment of a direct relationship between recurrences
and synchronization is of theoretical interest. On the other hand, the quantifi-
cation measures proposed in this chapter overcome some open problems in the
synchronization analysis of experimental systems:

• With the new indices we can quantify the degree of synchronization in the
case of non-phase coherent, complex systems, with inherent multiple time
scales. Therefore, they are applicable to a wide class of dynamical systems.

• The proposed measures are also appropriate for the analysis of non-stationary
data.

• They allow to detect very easily clusters of phase synchronized oscillators
in a network.

First, these indices are introduced and the applicability of the algorithm is illus-
trated for various examples, such as the paradigmatic chaotic Rössler system in

43
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the funnel regime. Furthermore, it is demonstrated for simulated and experimen-
tal data, that the method can easily detect phase and generalized synchronization
in non-phase coherent and even non-stationary time series. The robustness of the
presented technique against observational noise is also discussed.

5.1 Detection of Phase Synchronization of Chaotic

Systems

As we have seen in Sec. 4.1, two systems are said to be phase synchronized when
their respective frequencies and phases are locked. To study PS of chaotic signals,
one has to identify a well defined phase variable in both coupled systems. If the
flow of the chaotic oscillators has a proper rotation around a certain reference
point, the phase can be defined in a straightforward way. For example, for the
Rössler system with standard parameters (Eq. 2.19) the projection of the chaotic
attractor on the (x, y) plane looks like a smeared limit cycle. Hence, the phase
can be defined as

Φ(t) = arctan(y(t)/x(t)). (5.1)

A more general approach to define the phase in chaotic oscillators, is the analytic
signal approach introduced in [21]. The analytic signal χ(t) is given by

χ(t) = s(t) + is̃(t) = A(t)eiΦ(t), (5.2)

where s̃(t) denotes the Hilbert transform of the observed scalar time series s(t)

s̃(t) =
1

π
P.V.

∫
∞

−∞

s(t′)

t− t′
dt′, (5.3)

where P.V. stands for the Cauchy principal value for the integral [66].
The phase of a chaotic oscillators can also be defined based on an appropriate
Poincare’ section which the chaotic trajectory crosses once for each rotation. Each
cross of the orbit with the Poincare’ section corresponds to an increment of 2π
of the phase, and the phase in between two crosses is linearly interpolated,

Φ(t) = 2πk + 2π
t− tk

tk+1 − tk
, (tk < t < tk+1), (5.4)

where tk is the time of the kth crossing of the flow with the Poincare’ section.
For phase coherent chaotic oscillators, i. e. for flows which have a proper rotation
around a certain reference point, the phases calculated by these different ways
are in good agreement [13]. However, we often meet non-coherent attractors with
rather broad band power spectra. In these cases, in general a single characteristic
time scale does not exist. For this kind of systems it is difficult or impossible to
find a proper center of rotation, around which the trajectory oscillates. Hence,
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it is also intricated to find a Poincare’ section that is crossed transversally by
all trajectories of the chaotic attractor. Therefore, the definitions of the phase
given above, are not longer applicable. Indirect criteria, e. g. based on the am-
plitude of the ensemble average of the system, have been proposed to detect PS
of chaotic oscillators without coherent phase dynamics [63]. If the systems are
in PS the mean field is an oscillating function of time with the locked frequency
and a large amplitude. In the absence of PS the mean field fluctuates about zero.
In this case, an ensemble of replicas of the chaotic system, or a very long chaotic
signal is needed, and this is not always available when dealing with experimental
data. Another indirect criterion is based on the increment of the intensity of the
spectral component at the driving frequency in the phase synchronized regime.
However, the threshold value for PS cannot be uniquely determined from the
spectrum [58].
Rosenblum et al. have proposed a method for the determination of a characteris-
tic oscillation frequency for a broad class of chaotic oscillators generating complex
signals in [76]. There, an ensemble of uncoupled limit cycle oscillators with nat-
ural frequencies distributed in some interval is considered. Each oscillator of
the ensemble is driven by a common complex signal. This signal ”synchronizes”
those elements of the ensemble which have frequencies close to the characteris-
tic frequency of the complex driving signal. Plotting the frequencies Ωk of the
driven limit cycle oscillators versus the natural frequencies ωk, synchronization
manifests itself in the appearance of a horizontal plateau, where the frequency of
the entrained limit cycles is equal to the unknown frequency. With this technique
synchronization has been detected between systems, which do not allow an esti-
mation of their frequencies by means of a direct application of e. g. the Hilbert
transformation. However, the authors state that for chaotic systems with very
complicated topology, the plateau may be not seen at all and hence the frequency
may be not found. Moreover, the proposed method defines the frequency of a
signal and hence, the estimation of the frequency for a different observable may
yield different results.
On the other hand, Osipov et al. have recently proposed another definition of
the phase based on the general idea of the curvature of an arbitrary curve [53].
For any two-dimensional curve r = (u, v) the angle velocity at each point is

ν = (ds/dt)/R, (5.5)

where ds/dt =
√
u̇2 + v̇2 is the speed along the curve and R = (u̇2 + v̇2)3/2/(v̇ü−

v̈u̇) is the radius of the curvature. If R > 0 at each point, then

ν =
dΦ

dt
=
v̇ü− v̈u̇

u̇2 + v̇2
(5.6)

is always positive and hence the variable

Φ =

∫
νdt = arctan

v̇

u̇
(5.7)
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is a monotonically growing angle function of time and can be considered as the
phase of the oscillator. These definitions of frequency and phase are general for
any dynamical system if the projection of the phase trajectory on some plane is
a curve with a positive curvature. For the non-phase coherent Rössler system
in funnel regime (Eq. 2.19 with a = 0.3, b = 0.4 and c = 7.5), the projections
of chaotic trajectories on the plane (ẋ, ẏ) always rotate around the origin, and
the phase can be defined as Φ = arctan ẏ/ẋ. By means of this definition, three
possible types of transition to PS in dependence on the coherence properties of
the motions have been found [53].
However, in the definition of Eq. 5.7 for the phase, derivatives of the compo-
nents are used. This can be problematic when dealing with time series that are
subjected to rather high noise levels. Furthermore, for high dimensional chaotic
systems, it is not clear whether an appropriate plane can be always found, on
which the projected trajectories rotate around the origin.
In the next section we introduce a criterion for the detection of PS in chaotic
oscillators based on recurrences in phase space. This index for PS is applicable
to high dimensional systems and it is rather robust against noise influence and
non-stationarities, as we will demonstrate. Further, it is defined for the whole
system under consideration and not only for one component of it. Hence, the
proposed PS index does not depend on the observable which is available.

5.2 Recurrence Based Index for PS

In order to link the concept of recurrences to PS, we concentrate on the probability
P (ε)(τ) that the system returns to the neighborhood of a former point xi of the
trajectory after τ time steps [47] (the neighborhood is defined as a box of size ε
centered at xi, as we use the maximum norm). This probability can be estimated
directly from the RP as follows 1

P̂ (ε)(τ) =
1

N − τ

N−τ∑

i=1

Θ(ε− ||xi − xi+τ ||) =
1

N − τ

N−τ∑

i=1

R
(ε)
i,i+τ . (5.8)

P̂ (ε)(τ) is a generalized autocorrelation function, as it also describes higher
order correlations between the points of the trajectory in dependence on τ . A
further advantage with respect to the linear autocorrelation function, is that
P̂ (ε)(τ) is determined for a trajectory in phase space and not only for a single
observable of the system’s trajectory. As it is a probability, it assumes values
between 0 and 1.
For a periodic system in a 2-dimensional phase space, which is a circle or an

1Note, that P̂ (ε)(τ) is just the rate of black points per line parallel to the main diagonal.
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ellipse, it can be easily shown that

P (τ) = lim
ε→0

P̂ (ε)(τ) =

{
1 : τ = kT, with k ∈ N
0 : otherwise

where T denotes the period of the system. Note that the RP of periodic tra-
jectories in phase space consists of non-interrupted diagonal lines separated by
τ = T time steps (see Fig. 2.1). This reflects the fact, that after one rotation
in phase space, the probability that the trajectory recurs to its starting point is
equal to one. However, for chaotic systems the diagonal lines (except the main
one) in the RP are interrupted due to the exponential divergence of chaotic tra-
jectories, i. e. two trajectories with similar initial conditions evolve similarly, but
after some time, they diverge. However, a certain regularity remains in the RP
of chaotic systems, especially if they are phase coherent, like the Rössler system
for standard parameters (Eq. 2.19). The probability that the trajectory recurs
after one or more rotations around the fixed point is rather high, but clearly less
than one (see Fig. 5.1).
This is expressed by P̂ (ε)(τ) (Fig. 5.2), where strong local maxima at multiples

of the mean period of the chaotic system occur. (From now on, we omit (ε) and
·̂ in P̂ (ε)(τ) to simplify the notation.)
Now we show how to connect P (τ) to PS and demonstrate that this approach

overcomes the problem present in non-phase coherent systems.
Originally, a phase Φ is assigned to a periodic trajectory x in phase space, project-
ing the trajectory onto a plane and choosing an origin, around which the whole
trajectory oscillates. Then an increment of 2π is assigned to Φ, when the point of
the trajectory has returned to its initial position, i. e. when y(t+ T )− y(t) = 0,
where y represents the trajectory which is projected on the plane. This concept
of phase can be extended to more complex non-periodic trajectories, e. g., the
chaotic Rössler system for standard parameters (Eq. 2.19). In this case, the tra-
jectory is projected on the (x, y) plane and the fixed point (0, 0) is chosen as an
appropriate origin. Then, the phase can be estimated as Φ(t) = tan−1(y(t)/x(t))
(see Sec. 5.1). However, there are many systems, such as the Rössler in the funnel
regime, where it is difficult or impossible to find an origin on the projection plane
around which all points of the trajectory oscillate.
Our approach, which is based on the probability of recurrence in phase space, of-
fers an alternative to assign an increment of 2π to the phase, avoiding the problem
of choosing an origin and a projection plane. Analogously to the case of a periodic
system, we can ascribe an increment of 2π to Φ to a complex non-periodic trajec-
tory x(t), when ||x(t+T )−x(t)|| ∼ 0, or equivalently when ||x(t+T )−x(t)|| < ε,
where ε is a predefined threshold. That means, a black point in the RP at the
coordinates (t, t + τ) can be interpreted as an increment of 2π of the phase in
the time interval τ (of course, τ must be greater than the correlation time of the
system, or equivalently, greater than the Theiler window [89]). In this way, we
neither have to choose an origin nor a projection plane.
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Figure 5.1: After one rotation around the fixed point it is quite probable to recur
to its starting point (a). Nevertheless, this is not always the case (b). Hence, the
probability to recur after one rotation around the fixed point is less than one.
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Figure 5.2: a) RP of the Rössler system in phase-coherent regime (Eq. 2.19). b)
Corresponding probability of recurrence P̂ (ε)(τ) (Eq. 5.8).
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Figure 5.3: a) 3-dimensional periodic trajectory in phase space. b) Corresponding
projection on the (x, y) plane. Two reasonable choices for the origin are marked
with crosses.

Another problem linked to the definition of the phase based on a projection onto
an appropriate plane, is the appearance of false neighbors. This idea is illustrated
in Fig. 5.3, where a periodic function lying in a 3-dimensional Cartesian space
is represented in phase space (a) and its projection on the (x, y) plane (b). In
the projection (Fig. 5.3 b), there is some ambiguity by choosing an origin, and
depending on this choice, the obtained phase is strongly different [66]. But from
the representation of the trajectory in phase space (Fig. 5.3 a), we see that it is
topologically equivalent to a circle, where there is no problem with the choice of
the origin. Using the ”recurrence” approach, we consider that the phase has in-
creased by 2π, when the trajectory recurs to its initial point in the 3-dimensional
phase space, i. e. when R

(ε)
t,t+τ = 1. This is equivalent in this case to fixing the

origin in the middle of the circle in the 3-dimensional phase space. Moreover, for
higher dimensional phase spaces our approach would be still valid, whereas the
trajectory on the projection plane may be rather complicated, as consisting of
two or more kinds of orbits.

This interpretation of the recurrent points with respect to the phase, can be
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extended to arbitrary complex trajectories, especially to chaotic ones. As each
chaotic trajectory can be considered as jumping from one unstable periodic orbit
(UPO) to another one [55], we will find a recurrence every time when the trajec-
tory has completed a turn about one UPO. On the other hand, a turn about one
UPO corresponds to an increment of 2π for Φ in the original phase space, but
not necessarily in the projection.
P (τ) can be considered as a statistical measure about how often Φ has increased
by 2π or multiples of 2π within the time τ in the original phase space. If two
systems are in PS, their phases increase on average by k ·2π , where k is a natural
number, within the same time interval τ . Hence, looking at the coincidence of
the positions of the maxima of P̂ (ε)(τ) for both systems, we can quantitatively
identify PS. A recurrence to a neighborhood after τ time steps does not occur
with the same probability for the two systems, but the conditional probability
that a recurrence in the second system occurs given that the first system has not
returned yet is almost 0, because of the equality of their frequencies. Therefore,
we introduce as the first criterion for phase synchronization the cross correla-
tion between P1(τ) and P2(τ) to quantify PS (P1(τ) represents the probability of
recurrence of the first system, and P2(τ) of the second one):

CPR =
< P̄1(τ)P̄2(τ) >

σ1σ2

, (5.9)

where P̄1,2 means that the mean value has been subtracted and σ1 and σ2 are the
standard deviations of P1(τ) respectively. P2(τ). We call this index CPR (Cor-
relation of Probability of Recurrence). CPR is defined between −1 and 1,
because it is a ”cross correlation” between two time series. If both systems are in
PS, the probability of recurrence is maximal at the same time τ and CPR ' 1.
In contrast, if the systems are not in PS, the maxima of the probability of re-
currence do not occur simultaneously. Then we observe a drift (Fig. 5.6 b) and
hence expect rather low values of CPR.

5.2.1 Examples for PS

In this section we exemplify the application of the index CPR for PS to four
prototypical examples. The number of data points used for the analysis presented
here is 5, 000.

• We start with the periodically driven Rössler system [66]:

ẋ = −y − z + µ cos(ωt)

ẏ = x+ 0.15y (5.10)

ż = 0.4 + z(x− 8.5)
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Figure 5.4: P (τ) for a periodically driven Rössler (Eqs. 5.10) in PS (a) and in
non-PS (b). Solid line: P (τ) of the driven Rössler, dashed line: P (τ) of the
periodic forcing.

For the frequency ω = 1.04 and coupling strength µ = 0.16, the periodic
forcing locks the frequency of the Rössler system. This can be clearly seen
in Fig. 5.4 a: the position of the maxima coincide. The value of the recur-
rence based PS index is CPR = 0.862.
For the parameters ω = 1.1 and µ = 1.1, the periodic forcing does not
synchronize the Rössler system. Hence, the joint probability of recur-
rence is very low, which is reflected in the drift of the corresponding P (τ)
(Fig. 5.4 b). In this case, CPR = −0.00241.

• We continue our considerations with the periodically driven Lorenz system:

ẋ = 10(y − x)

ẏ = 28x− y − xz (5.11)

ż = −8/3z + xy + µ cos(ωt)

In Fig. 5.5 a the probabilities of recurrence P (τ) in the PS case (µ = 10, ω =
8.35) are represented: we see, that the position of the local maxima of the
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Figure 5.5: P (τ) for a periodically driven Lorenz in PS (a) and in non-PS (b).
Solid line: P (τ) of the driven Lorenz, dashed line: P (τ) of the periodic forcing.

Lorenz oscillator coincide with the ones of the periodic forcing. However,
the local maxima are not as high as in the case of the Rössler system, and
they are broader. This reflects the effective noise intrinsic in the Lorenz
system [13]. Because of this, the phase synchronization is not perfect: an
exact frequency locking between the periodic forcing and the driven Lorenz
cannot be observed [56]. In this case, we obtain CPR = 0.667. In the
non-PS case (µ = 10, ω = 7.5), we obtain CPR = 0.147 (Fig. 5.5 b).

• Now we consider the case of two mutually coupled Rössler systems in the
phase coherent regime:

ẋ1,2 = −ω1,2y1,2 − z1,2

ẏ1,2 = ω1,2x1,2 + 0.16y1,2 + µ(y2,1 − y1,2), (5.12)

ż1,2 = 0.1 + z1,2(x1,2 − 8.5)

According to [53], for ω1 = 0.98, ω2 = 1.02 and µ = 0.05 both systems are
in PS. We observe that the local maxima of P1 and P2 occur at τ = n · T ,
where T is the mean period of both Rössler systems (Fig. 5.6 a). The
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Figure 5.6: P (τ) for two mutually coupled Rössler systems (Eqs. 5.12) a) in phase
coherent regime for µ = 0.05 (b) and for µ = 0.02.
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heights of the local maxima are in general different for both systems if they
are only in PS and not in GS, as we will see later. But the positions of the
local maxima of P (τ) coincide. In this case, we obtain CPR = 0.998.
For µ = 0.02 the systems are not in PS and the positions of the maxima
of P (τ) do not coincide anymore (Fig. 5.6 b), clearly indicating that the
frequencies are not locked. In this case, we obtain CPR = 0.115.

• As last example with simulated data, we analyze the challenging case of
two mutually coupled Rössler systems in the funnel regime:

ẋ1,2 = −ω1,2y1,2 − z1,2

ẏ1,2 = ω1,2x1,2 + 0.2925y1,2 + µ(y2,1 − y1,2), (5.13)

ż1,2 = 0.1 + z1,2(x1,2 − 8.5),

where ω1 = 0.98 and ω2 = 1.02. We consider two different coupling
strengths: µ = 0.2 and µ = 0.05. We observe that the structure of P (τ)
in the funnel regime (Fig. 5.7) is rather different from the one in the phase
coherent Rössler system (Fig. 5.6). The peaks in P (τ) are not as well pro-
nounced as in the coherent regime, reflecting the different time scales that
play a relevant role and the broad band power spectrum of this system.
However, we see that for µ = 0.2 the locations of the local maxima coincide
for both oscillators (Fig. 5.7 a), indicating PS, whereas for µ = 0.05 the
positions of the local maxima do not coincide anymore (Fig. 5.7 b), indi-
cating non-PS. These results are in accordance with [53].

In the PS case, we obtain CPR = 0.988, and in the non-PS case,
CPR = 0.145. Note, that the positions of the first peaks in Fig. 5.7 b
coincide, although the oscillators are not in PS. This is due to the small
frequency mismatch (|ω1 − ω2| = 0.04). However, by means of the index
CPR we can distinguish rather well between both regimes.
In Sec. 5.5 the transition to PS for this system will be analyzed exhaus-
tively in terms of the index CPR. We will see, that the transition to PS
for non-phase coherent systems is different from the one for phase coherent
oscillators [53].

5.2.2 Influence of Noise

Dealing with experimental time series, one is always confronted with measure-
ment errors. Hence, it is necessary to analyze the influence of noise on the index
CPR (correlation of probability of recurrence) for PS.
We consider here additive or observational noise. We use Eqs. 5.12 as an example
for two different coupling strengths, so that we can compute the deviation which
is caused by noise in the non synchronized and in the synchronized case.
We add independent Gaussian noise with standard deviation σnoise = ασj to each
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Figure 5.7: P (τ) for two mutually coupled Rössler systems in funnel regime
(Eqs. 5.13) for µ = 0.2 (a) and for µ = 0.05 (b). Bold line: P1(τ), solid line:
P2(τ),



5.2. RECURRENCE BASED INDEX FOR PS 57

Figure 5.8: First component x1 of Eqs. 5.12 with 80% independent Gaussian
noise (for µ = 0.05). From the figure it is clearly recognizable, that it is difficult
to compute the phase by means of e. g. the Hilbert transformation.

coordinate j of the system, where σj is the standard deviation of the component
j and α is the noise level. In Fig. 5.8 the ”corrupted ” x-component of the first
Rössler subsystem x̃1(t) = x1(t)+ασ1η(t), where η(t) is a realization of Gaussian
noise and α = 0.8, is represented. From this figure it is clearly recognizable, that
it is difficult to compute the phase by means of e. g. the Hilbert transformation
for such a high noise level without filtering.
The choice of ε for the computation of P1(τ) and P2(τ) in the presence of noise
is automatically taken by fixing a determined RR (see Eq. 2.2 and algorithm
described in Sec. 2.3). The results presented below were computed for RR = 0.1,
but the results are rather independent on the choice of RR. However, RR should
not be chosen too small if the level of noise is very high.
In order to compute the index CPR for the noisy oscillators, we calculate first

the probabilities of recurrence P1(τ) and P2(τ) for coupling strengths µ = 0.05
(PS, Fig. 5.9) and µ = 0.02 (non-PS, Fig. 5.10). We note, that the peaks in
P1(τ) and P2(τ) become lower and broader (Figs. 5.9 b and 5.10 b) compared
with the noise free case, as expected (Figs. 5.9 a and 5.10 a). However, despite of
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Figure 5.9: Probabilities of recurrence for two coupled Rössler systems (Eqs. 5.12)
in PS (µ = 0.05) without noise (a) and with 80% Gaussian observational noise
(b). Bold line: subsystem 1, solid line: subsystem 2. Note, that the position of
the peaks of P1(τ) and P2(τ) coincide in both cases, and hence the solid line is
hidden by the bold one.
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Figure 5.10: Probabilities of recurrence for two coupled Rössler systems
(Eqs. 5.12) in non-PS (µ = 0.02) without noise (a) and with 80% Gaussian
observational noise (b). Bold line: subsystem 1, solid line: subsystem 2.
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µ CPR(80% noise) CPR(without noise)

0.02 (non-PS) 0.149 0.115
0.05 (PS) 0.998 0.998

Table 5.1: Index CPR index for PS calculated for two coupled Rössler systems
(Eqs. 5.12) with observational noise and without noise, for comparison.

the large level of noise, the positions of the local maxima coincide in the PS case,
and they drift away in the non-PS case. This a convenient result, because we
can still decide whether the oscillators are synchronized or not. This is reflected
in the obtained values for the CPR index: with 80% noise, in the PS case the
obtained value for CPR is exactly the same with and without noise, and in the
non-PS case is nearly the same (see Tab. 5.1). This shows that the index CPR
for PS is very robust against observational noise. Also in the case of dynamical
noise we can expect this method to work, due to its averaging.

5.2.3 Influence of Non-stationarity

Experiments are in general not only contaminated by some noise, but they are
also often subjected to instationarities (e. g. drifts). Sometimes, especially when
the system evades experimental manipulation (e. g. in the case of physiological
data), it may be difficult to avoid or suppress this. Hence, beyond the analysis
of the influence of noise, it is important to study the effect of non-stationarity on
the CPR index, as well.
In order to do so, we add three different trends to one of the coupled oscillators,
then compute the (modified index) CPR and compare with the value obtained
without trend at all. We choose again the two mutually coupled Rössler systems
(Eqs. 5.12) to exemplify our procedure.

• First, we add a linear trend to each component of the first oscillator:
x̃1(t) = x1(t)+at+ b, with a = 0.01 and b = 25.0 (y1 and z1 are modified in
the same way as x1). We compute the modified index CPR for the coupling
strengths µ = 0.02 (non-PS) and µ = 0.05 (PS). Tab. 5.2 shows that the
deviation of CPR from the case without trend is rather small for both PS
and non-PS cases.

• We add next a periodic trend to each component of the first oscillator:
x̃1(t) = x1(t) + b cos(2πat), with a = 0.001 and b = 10.0 (again, y1 and z1
are modified in the same way as x1). The results for µ = 0.02 (non-PS)
and µ = 0.05 (PS) are summarized in Tab. 5.2. The deviation from the
case without trend for µ = 0.05 is larger than for the other kinds of trends
considered. However, the value obtained for CPR is still rather high.
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Figure 5.11: x̃1 (solid line) and x2 (bold line) of Eqs. 5.12 for µ = 0.05. Despite of
the nonlinear trend added to x1, we can detect the PS by means of the recurrence
based index CPR.

• We now add a nonlinear trend to each component of the first oscillator:
x̃1(t) = x1(t) + bν(t), where b = 25.0 and ν(t) is a realization of the logistic
map (ν(t + 1) = aν(t)(1 − ν(t))) with a = 4.0. As usual, y1 and z1 are
transformed analogously. Fig. 5.11 shows a segment of x̃1 (x2 is also plotted
as reference). Fig. 5.12 represents the probabilities of recurrence P1(τ)
and P2(τ) in the PS (µ = 0.05) and non-PS (µ = 0.02) case. We see,
that despite of the nonlinear trend, we can clearly recognize in Fig. 5.12 a
that the oscillators are in PS, since the position of the local maxima of
the probability of recurrence coincide for both oscillators (analogously in
the non-PS case). This is reflected by the values obtained for CPR (see
Tab. 5.2).

The robustness of the index CPR against non-stationarities is another important
advantage for the synchronization analysis of experimental data with respect to
other methods, such as the Hilbert transformation, which does not work properly
for non-stationary data sets [66].
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Figure 5.12: Probabilities of recurrence with nonlinear trend: µ = 0.05 (a) and
µ = 0.02 (b). Bold line: subsystem 1, solid line: subsystem 2.

Coupling strength linear periodic nonlinear without trend

0.02 (non-PS) -0.0327 0.182 -0.0378 0.115
0.05 (PS) 0.793 0.652 0.894 0.998

Table 5.2: Index CPR for PS calculated for two mutually coupled Rössler systems
(Eqs. 5.12) with a linear trend, with a periodic trend and with a nonlinear trend.
The values for CPR without trend are also given for comparison.
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5.3 Detection of Generalized Synchronization

As discussed in Sec. 4.1, two (sub)systems in GS are connected by the relationship
y = ψ(x). Some statistical measures have been introduced for the detection of
GS. Most of them are based on the following idea, expressed by Rulkov et al. in
[78]: ”When trajectories in the phase spaces of driving and response systems are

connected by y(t) = ψ(x(t)), two close states in the phase space of the response

system correspond to two close states in the space of the driving system”. There,
the method of mutual false nearest neighbors was introduced based on this idea.
Other variations of the method have been proposed and analyzed in [6, 70, 81],
which are based on the squared mean distance and conditional distance between
mutual nearest neighbors.
A few other methods are based on the mutual predictability for detecting dy-
namical interdependence [80]. There, the nearest neighbors of each subsystem
are computed separately in its (sub)state space. This idea has been enhanced in
[100], where the nearest neighbors are computed in the mixed state space. Since
the nearest neighbors in the subspaces of x or y may be false nearest neighbors
in the whole space, the prediction may be improved and hence, also the criterion
for the interdependence between x and y is improved.
In the next section two new criteria are introduced for the detection of GS. They
exploit the relationship between the geometric connection between both systems
and their recurrences.

5.4 Generalized Synchronization and Recurrence

The connection between recurrences and GS is even more straightforward than
the one between recurrences and PS. As we have mentioned in the last sections,
when x(t) and y(t) are in GS, two close states in the phase space of x correspond
to two close states in the space of y [78]. Hence, the ”neighborhood identity” in
phase space is preserved (see Fig. 5.13), i. e. they are topologically equivalent.

Since the recurrence matrix R
(ε)
i,j is nothing else as a record of the neighborhood

of each point of the trajectory, one can conclude that two systems are in GS if
their respective RPs are almost identical. Note, that it is possible to reconstruct
the rank order of the time series considering only the information contained in
the RP (see Sec. 2.4). Therefore, we can use the recurrence properties to detect
and quantify GS.
However, in practice we note that the recurrence matrices of two systems in GS
are very similar, but not identical. This can be due to many reasons: computa-
tional roundoff errors, measurements inaccuracies, etc. Hence, we construct an
index that quantifies the degree of similarity between the respective recurrences
of both systems. We propose two different indices in order to quantify GS based
on the similarity of recurrences:
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Figure 5.13: The systems represented in (a) and (b) (Eqs. 5.20 and 5.21) are in GS [38].
Two neighbors (i, j) in the system in (a) are marked with squares. The corresponding
neighbors (i, j) in the system (b) are marked with triangles.

• The first approach compares the local recurrences of each point of the first
system with the local recurrences of the second system. This index has the
advantage, that it distinguishes rather well between non-PS, PS and GS or
LS (we consider LS as an special case of GS [75]).

• The second index is again based on the probability of recurrence P (τ)
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(Eq. 5.8). But in contrast to the CPR index for PS, we do not only demand
that the positions of the local maxima of P (τ) coincide for both systems,
but also the height of the peaks of P (τ) must be equal, i. e. we demand
that P1(τ) ' P2(τ). This index has the advantage to be very robust against
noise and non-stationarities.

The first index is based on the average probability of joint recurrence over
time, given by

RRx,y =
1

N2

N∑

i,j=1

Θ(εx − ||xi − xj||)Θ(εy − ||yi − yj||). (5.14)

If both systems x and y are independent from each other, then the average
probability of a joint recurrence 2 is given by RRx,y = RRxRRy (see Sec. 3.3). If
the oscillators are on the other hand in GS, we expect an approximate identity
of their respective recurrences, and hence RRx,y = RRx = RRy [78].
For the computation of the recurrence matrix in the case of essentially different
systems that undergo GS, it is more appropriate to use a fixed number of nearest
neighbors for each column in the matrix, following the idea presented in [6, 70, 81],
than using a fixed threshold. That means, that the threshold is different for each
column in the RP, but subjected to the following condition

N∑

j=1

Θ(εi − ||xi − xj||) = A ∀i, (5.15)

where A is the fixed number of nearest neighbors. We can automatically fix the
RR by means of

RR = AN/N 2 = A/N,

and using the same A for each subsystem x and y, RRx = RRy = RR.
Hence, the coefficient

S =
RRx,y

RR
(5.16)

is an index for GS that varies from RR to 1: it is approximately RR for inde-
pendent systems, and it is close to 1 for systems in GS.
However, with the index S we would not detect lag synchronization (y(t+ τ̃) =
x(t)). Since LS can be considered as an special case of GS [75], it would be de-
sirable to have an index that also detects LS. For this reason, we include a time
lag in the similarity and introduce the following quotient

S(τ) =
1/N2

∑N
i,j Θ(εi

x
− ||xi − xj||)Θ(εi

y
− ||yi+τ − yj+τ ||)

RR
, (5.17)

2note that the average probability of a joint recurrence is the recurrence rate of the joint
recurrence plot (JRP).
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where the thresholds εi
x

and εi
y

are subjected to the following conditions:

N∑

j=1

Θ(εi
x
− ||xi − xj||) = A ∀i,

N∑

j=1

Θ(εi
y
− ||yi − yj||) = A ∀i.

Then, we choose the maximum value of S(τ) and normalize:

JPR = max
τ

S(τ) − RR

1 − RR
. (5.18)

We denote this index by JPR because it is based on the average joint proba-
bility of recurrence. Since S(τ) varies between RR and 1, JPR ranges from
0 to 1. The value of RR is in principle a free parameter and its choice depends
on the case under study. We consider rather low values of RR, e. g. 1% or 2%
as appropriate.
The second index we propose, is based on the following idea: as we have men-
tioned above, the recurrence matrix contains only information about the neigh-
borhood of each point of a time series. Hence, if two systems are in GS, their
respective RPs must be almost identical. From this, it follows that also their
respective probabilities of recurrence must coincide, as P (τ) is unambiguously
given by Ri,j (Eq. 5.8).
This suggests that the similarity coefficient between Px(τ) and Py(τ)

SPR = 1 − < (P̄x(τ) − P̄y(τ))2 >

σxσy

, (5.19)

is of the order of 1 if x and y are in GS, and approximately zero or less than
zero, if Px(τ) and Py(τ) are independent of each other (P̄ (τ) means that the
mean value has been subtracted and σx and σy are the standard deviations of
Px(τ) respectively. Py(τ)) [75]. We call this index similarity of probability of
recurrence (SPR).
In the next sections, we show some examples and the advantages and disadvan-
tages of these two recurrence based indices for GS.

5.4.1 Examples for GS

In this section we show two examples of chaotic systems that undergo GS and
compute for them JPR and SPR.



5.4. GS AND RECURRENCE 67

Figure 5.14: Projection of the Rössler driving system (a), the driven Lorenz
system (b) and the diagram x2 vs y2 of Eqs. 5.20 and 5.21 (c).

• First we consider the Lorenz system driven by a Rössler system. The
equations of the driving system are:

ẋ1 = 2 + x1(x2 − 4)

ẋ2 = −x1 + x3 (5.20)

ẋ3 = x2 + 0.45x3,

and the equations of the driven system are the following:

ẏ1 = −σ(y1 − y2)

ẏ2 = ru(t) − y2 − u(t)y3 (5.21)

ẏ3 = u(t)y2 − by3,

where u(t) = x1(t)+x2(t)+x3(t) and the parameters were chosen as follows:
σ = 10, r = 28 and b = 2.666. In [38] it was shown, that the systems of
Eqs. 5.20 and 5.21 are in GS, since the driven Lorenz system is asymptoti-
cally stable.
To demonstrate that they are completely different systems and that they
are not in LS or CS, Fig. 5.14 shows the projections of the system 5.20 (a),
of the system 5.21 (b) and the x2 versus y2 diagram (c).
Dealing with experimental time series, usually only one observable of the

system is available. Hence, we perform the analysis with just one compo-
nent of each system to illustrate the applicability of the proposed method
(we use 10, 000 data points with a sampling time interval of 0.02 s). In this
example, we take x3, respectively, y3 as observables. Then, we reconstruct



68 CHAPTER 5. RECURRENCE AND SYNC

Figure 5.15: a) RP of the Rössler subsystem (Eqs. 5.20). b) RP of the driven
Lorenz subsystem (Eqs. 5.21). c) JRP of whole system (Eqs. 5.20 and 5.21).

the phase space vectors using delay coordinates [87]. For the subsystem
x we obtain the following embedding parameters 3: delay time τ = 5 and
embedding dimension m = 3. For the subsystem y we find: τ = 5 and
m = 7. The corresponding RPs and JRP are represented in Fig. 5.15.
We see, that despite of the essential difference between both subsystems,

their RPs are very similar (Fig. 5.15 a and b). Therefore, the structures
are reflected also in the JRP and consequently, its recurrence rate is rather
high. In this case, with the choice RR = 0.02 we obtain JPR = 0.605 (the
value of JPR is similar for other choices of RR).
In order to show the contrary case, where both subsystems are independent
(Fig. 5.16), we compute the RP of the Rössler system (Eq. 5.20) and of
the independent Lorenz system [111], as well as their JRP (Fig. 5.17). We
clearly see, that the mean probability over time for a joint recurrence is
very small, as the JRP has almost no recurrence points. For this case, one
obtains JPR = 0.047 using embedding parameters τ = 5 and m = 3 for
both systems, and RR = 0.02.

3see [29] for a detailed instructions



5.4. GS AND RECURRENCE 69

Figure 5.16: Projection of the Rössler system (Eqs. 5.20)(a), the independent
Lorenz system [111] (b) and the diagram x2 vs y2, where x2 is the second com-
ponent of the Rössler system and y2 is the second component of the independent
Lorenz system (c).

Now, we compute the second index proposed SPR (Eq. 5.19) (5, 000 data
points were used and a sampling time interval of 0.02 s). We see in
Fig. 5.18 a, that the probability of recurrence of both systems in GS nearly
coincides. For comparison, P (τ) for a Lorenz system independent of a
Rössler is represented in Fig. 5.18 b. In this case, the respective P (τ)
are very different. For the GS case, we obtain SPR = 0.934 and for the
independent case, SPR = −0.196. Here, we have used for the analysis
the original components of Eqs. 5.20 and 5.21. Using embedding coordi-
nates, the results are also convenient: SPR = 0.832 for the GS case, and
SPR = −0.365 for the independent case.

• Two mutually coupled Ros̈sler systems (Eqs. 5.12): for the coupling
strength µ = 0.11 both oscillators are in LS, as can be seen in Fig. 5.19.
In this case, the RPs of both subsystems are obviously almost identical,
except for a displacement on τ in the diagonal direction. Computing the
index following Eqs. 5.17 and 5.18, we obtain the value JPR = 0.988
(JPR is in this case not exactly 1, because we do not have perfect LS, i. e.
x(t+τ) ' y(t) [75]). For a smaller coupling strength µ = 0.02 the oscillators
are not in LS anymore. The obtained value is in this case JPR = 0.014.
Computing the second proposed index SPR for this case, we obtain SPR =
0.999 for µ = 0.11, as expected. And for µ = 0.02, the result is SPR =
−0.657.
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Figure 5.17: a) RP of the Rössler subsystem (Eqs. 5.20). b) RP of the indepen-
dent Lorenz system [111]. c) JRP of whole system.
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Figure 5.18: a) P (τ) for the Lorenz system driven by the Rössler (Eqs. 5.20 and
5.21). As both systems are in GS, their probabilities of recurrence almost coincide
(solid line: driven Lorenz, bold line: Rössler). b) The same for a Lorenz system
[111] independent of the Rössler system (Eqs. 5.20), for comparison.

Figure 5.19: Example of lag synchronization: it is clearly seen that x1 (bold line)
goes behind y1 (solid line). It holds: x1(t+ τ) = y1(t), with τ = 4.
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Case JPR(5% noise) JPR(without noise)

GS 0.527 0.605
independent 0.0438 0.0470

Table 5.3: Index JPR calculated for Eqs. 5.20 and 5.21 with observational noise
and without noise, for comparison.

Case RR=0.02 RR=0.1 RR=0.2 RR=0.5

GS 0.107 0.191 0.213 0.120

Table 5.4: Index JPR calculated for the Lorenz system driven by the Rössler
(Eqs. 5.20 and 5.21) with 20% observational noise and different choices of RR.

5.4.2 Influence of Noise

Analogously to Sec. 5.2.2, we analyze the influence of noise on the recurrence
based indices for GS. We take as example the Lorenz system driven by the Rössler
(Eqs. 5.20 and 5.21).

• First of all, we concentrate on JPR (Eq. 5.18). This index is not as robust
as the index CPR to the influence of noise, i. e. with noise levels of 80%,
the deviations of JPR from the noise free value are rather large, so that we
cannot differentiate GS from independent systems. But for moderate noise
levels, it yields rather good results (see Tab. 5.3).
If we have higher noise levels, we can minimize the deviation of the value

of JPR from the noise free case, choosing a higher RR. This corresponds
to using higher thresholds εi in the computation of JPR [90]. The results
for 20% noise and different values of RR are summarized in Tab. 5.4. We
see, that if RR is chosen too high, then the deviation of JPR from the noise
free becomes also large. This is because for RR = 0.5 half of the points
in the RP are black and hence, spurious structures appear. The optimal
choice of RR in this case, is about 0.2.

• Now, we analyze the influence of noise on SPR (Eq. 5.19). This index is
based on the probability of recurrence P (τ), as well as CPR, and hence
it is very robust against noise. We add to each component of Eqs. 5.20
and 5.21 80% independent noise and compute P (τ) for both subsystems
(Fig. 5.20). We see, that although the peaks of P (τ) have become much
smaller because of the high noise level (compared with the noise free case
shown in Fig. 5.18), P (τ) of the driven Lorenz almost coincides with P (τ)
of the driving Rössler system (Fig. 5.20 a). The results obtained with SPR
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Figure 5.20: (a) P (τ) for the Lorenz system driven by the Rössler (Eqs. 5.20 and
5.21) with 80% observational noise (solid line: driven Lorenz, bold line: Rössler).
(b) The same as in (a) for Lorenz independent of Rössler.
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Case SPR(80% noise) SPR(without noise)

GS 0.968 0.934
independent 0.523 -0.196

Table 5.5: Index SPR calculated for Eqs. 5.20 and 5.21 with observational noise
and without noise, for comparison.

Case linear periodic nonlinear without trend

GS 0.104 0.143 0.057 0.605
independent 0.136 0.137 0.094 0.0470

Table 5.6: Index JPR for GS calculated for the Lorenz system driven by the
Rössler (Eqs. 5.20 and 5.21) with a linear trend, with a periodic trend and with a
nonlinear trend. The values for JPR without trend are also given for comparison.

are summarized in Tab. 5.5. For the GS case, we see that there is almost no
deviation of SPR from the free noise case. For the independent subsystems,
we obtain a larger value of SPR with noise than without noise. At first,
this may be surprising, but it is due to the fact that because of the high
noise level, the peaks of both P (τ) become smaller. Hence, the difference
between them is also smaller than in the case without noise.

5.4.3 Influence of Non-stationarity

We proceed in the same way as in Sec. 5.2.3 and take as example the Lorenz
system driven by the Rössler (Eqs. 5.20 and 5.21). We add three different trends
to the components of Eqs. 5.20 (linear, periodic and nonlinear) and compute both
indices JPR and SPR.
In Tab. 5.6 the results for the index JPR are summarized. We see, that this index
is not robust against non-stationarities. But as it is applicable to rather short
time series, one can overcome this problem performing the analysis in windows.
In Tab. 5.7 the results for the index SPR are recapped. From this table, we see

that SPR is rather stable against instationarities, similarly to the CPR index
for PS. This is due to the averaging by computing the probability of recurrence
P (τ) (Eq. 5.8).
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Case linear periodic nonlinear without trend

GS 0.701 0.672 0.739 0.934
independent -0.238 -0.191 -0.546 -0.196

Table 5.7: Index SPR for GS calculated for Eqs. 5.20 and 5.21 with a linear
trend, with a periodic trend and with a nonlinear trend. The values for JPR
without trend are also given for comparison.

5.5 Transition to Phase to Generalized Synchro-

nization

We have seen in the previous sections, that the indices CPR, JPR and SPR
clearly distinguish between oscillators in PS and oscillators which are not in PS,
respectively GS. On the other hand, the synchronization indices should not only
distinguish between synchronized and not synchronized regimes, but also indicate
clearly the onset of PS, respectively of GS.
In order to demonstrate that the recurrence based indices fulfill this condition,
we exemplify their application by two examples: two mutually coupled Rössler
systems in a phase coherent regime (Eqs. 5.12), and in a non-phase coherent
funnel regime (Eqs. 5.13). We increase in both cases the coupling strength µ
continuously and compute for each value of µ the indices CPR, JPR and SPR.
On the other hand, in the phase coherent case for a not too large but fixed fre-
quency mismatch between both oscillators and increasing coupling strength, the
transitions to PS and LS are reflected in the Lyapunov spectrum [66, 13] 4. If
both oscillators are not in PS, there are two zero Lyapunov exponents, that cor-
respond to the (almost) independent phases. Increasing the coupling strength,
the fourth Lyapunov exponent λ4 becomes negative (see Fig. 5.21 d), indicating
the onset of PS. For higher coupling strengths, the second Lyapunov exponent
λ2 crosses zero, which indicates the establishment of a strong correlation between
the amplitudes (see Fig. 5.21 d). This last transition occurs almost simultane-
ously with the onset of LS [75]. Therefore, we compute for our two examples also
λ2 and λ4 in order to validate the results obtained with CPR and JPR.
In Fig. 5.21 the indices CPR (a), JPR (b) and SPR (c) are represented for
increasing coupling strength µ for the phase coherent case. In (d) λ2 and λ4

are also shown in dependence on µ. By means of CPR, the transition to PS is
detected when CPR becomes of the order of 1. We see from Fig. 5.21 a, that
the transition to PS occurs at approximately µ = 0.037, in accordance with the
transition of the fourth Lyapunov exponent λ4 to negative values. The other two

4For other cases, e. g. for a fixed coupling strength and decreasing frequency mismatch, or
for a large frequency mismatch and increasing coupling strength, the transition to PS is not
always reflected in the Lyapunov spectrum (see Sec. 4.4).
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Figure 5.21: CPR (a), JPR (b), SPR (c)coefficients and λ2 and λ4 (d) in depen-
dence of the coupling strength for two mutually coupled Rössler systems in the
phase coherent regime. The dotted zero line in (d) is plotted to guide the eye.
The arrows indicate the transition of λ4 to negative values and the transition of
λ2 to zero.
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criteria, JPR and SPR, also show the transition to PS, although they are in-
dices for GS. The index JPR shows three plateaus in dependence on the coupling
strength (Fig. 5.21 b), indicating the onset of PS at the beginning of the second
one. The index SPR jumps from rather small values to values around 0.96 at
the onset of PS (a magnification is shown in Fig. 5.21 c).
On the other hand, JPR clearly indicates the onset of LS because it becomes
nearly one (third plateau) at approximately µ = 0.1 (Fig. 5.21 b), after the
transition from hyperchaoticity to chaoticity, which takes place at approximately
µ = 0.08 (Fig. 5.21 d). Between µ = 0.08 and µ = 0.1, the values of JPR have
large fluctuations. This reflects the intermittent lag synchronization [75, 13],
where LS is interrupted by intermittent bursts of no synchronization. The index
SPR becomes nearly one at approximately µ = 0.08, coinciding with the transi-
tion to LS according to the Lyapunov spectrum. The index SPR is based on the
probability of recurrence, and hence, it is obtained by averaging over the time
series. Therefore, the burst LS errors are averaged out and it does not detect the
intermittent LS. The problem with SPR is that it does not distinguish between
PS and LS as well as JPR: the values obtained with SPR for oscillators that
are in PS but not yet in LS, are of the order of 0.96, whereas the values obtained
with JPR for PS are of the order of 0.22. In this way, JPR has more power to
detect LS than SPR.
Now we regard the more complex case of two coupled Rössler systems in the
non-coherent funnel regime, where the direct application of the Hilbert transfor-
mation is not possible [53]. In Fig. 5.22 the coefficients CPR, JPR and SPR
are represented for this case in dependence on the coupling strength µ. Again,
λ2 and λ4 are also shown (Fig. 5.22 d).
First, we note that for µ > 0.02, λ4 has already passed to negative values
(Fig. 5.22 d). However, CPR is still rather low, indicating that both oscilla-
tors are not in PS yet. CPR does not reveal the transition to PS until µ = 0.18
(Fig. 5.22 a), as found with other techniques [53]. Furthermore, we see from
Fig. 5.22 d, that λ2 vanishes at µ ∼ 0.17. This transition indicates that the
amplitudes of both oscillators become highly correlated. At approximately the
same coupling strength, both indices JPR and SPR reach rather high values, in-
dicating the transition to GS (Fig. 5.22 b, c). Then, according to the index CPR
the transition to PS occurs after the onset of GS. This is a general result that
holds for systems with a strong phase diffusion, as reported in [53]. For highly
non-phase coherent systems, there exists more than one characteristic time scale.
Hence, a high coupling strength is necessary in order to maintain the phase lock-
ing of both oscillators. Hence, PS is not possible without a strong correlation in
the amplitudes.
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Figure 5.22: CPR (a), JPR (b), SPR (c)coefficients and λ2 and λ4 (d) in de-
pendence on the coupling strength for two mutually coupled Rössler systems in
the funnel regime. The dotted zero line in (d) is plotted to guide the eye. The
arrows indicate the transition of λ4 to negative values and the transition of λ2 to
zero.
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5.6 Application to Experimental Data

5.6.1 Electrochemical Data

In order to test the applicability of the method to experimental data, we analyze
time series from two globally coupled electrochemical oscillators.
The experiments were done with an electro-dissolution of iron in sulfuric acid
in which non-phase coherent chaotic signals can be obtained and in which cou-
pling strength µ can be varied. A standard three-compartment electrochemical
cell consisting of an array of two iron working electrodes, a Hg/Hg2SO4/K2SO4

reference electrode and a Ptmesh counter electrode was used. The applied poten-
tials of the two electrodes were held at the same value with a potentiostat and the
experiments were performed in 0.5mol/dm3H2SO4 solution at room temperature
in stagnant solution. The currents of the electrodes were measured independently
at a sampling rate of 2kHz. The electrodes were connected to the potentiostat
through two individual parallel resistors (Rind) and through one series collec-
tive resistor (Rcoll) which furnishes a global coupling of strength µ = Rcoll/Rtot,
where Rtot = Rcoll +Rind/2 was kept constant. For µ = 0, the external resistance
furnishes no additional coupling and for µ = 1, maximal external coupling is
achieved [33]. Fig. 5.23 shows a segment of the time series of both electrochem-
ical oscillators without coupling (µ = 0). Two main different time scales are
recognizable (small and large oscillations), indicating the non-phase coherency of
both oscillators.
Now we compute the indices CPR (Eq. 5.9), JPR (Eq. 5.18) and SPR (Eq. 5.19)

for six different coupling strengths µ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.
We begin with the computation of the indices that are all based on the probabil-
ity of recurrence P (τ) (Eq. 5.8). For the estimation of P (τ) of each oscillator, we
choose RR = 0.1. Fig. 5.24 shows the probabilities of recurrence in dependence
on the time lag for two different coupling strengths µ = 0 (a) and 0.6 (b). It
can be clearly recognized, that without coupling, the position of the maxima of
P (τ) of both oscillators do not coincide (Fig. 5.24 a), whereas for µ = 0.6, the
probabilities of recurrence of both oscillators nearly coincide, indicating not only
PS, but also GS (Fig. 5.24 b).
For the computation of JPR we choose also RR = 0.1. In Fig. 5.25 the RPs and
JRPs of both electrochemical oscillators are shown for µ = 0 and in Fig. 5.26 the
corresponding plots are shown for µ = 0.6. We see, that for µ = 0 the JRP has
almost no recurrence points, since both oscillators are independent (Fig. 5.25 c).
In contrast, for µ = 0.6 the RPs of both oscillators are very similar, and hence,
also the JRP, indicating GS (Fig. 5.26).
The results of the computation of the three indices for the different coupling
strengths µ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} are represented in Fig. 5.27. We note,
that the three synchronization indices have a similar course: the highest value
is reached at µ = 0.6 and for higher coupling strengths, the indices decrease.
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Figure 5.23: Time series of the current of two electrochemical oscillators for
coupling strength µ = 0 which display chaotic non-phase coherent signals. Solid
line: oscillator 1, bold line: oscillator 2.
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Figure 5.24: Probability of recurrence P (τ) (Eq. 5.8) for two non-phase coherent
coupled electrochemical oscillators (solid line: oscillator 1, bold line: oscillator 2)
for coupling strengths µ = 0 (a) and µ = 0.6 (b).
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Figure 5.25: RP of the first electrochemical oscillator (a), RP of the second
electrochemical oscillator (b) and JRP of both systems (c) (for µ = 0).
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Figure 5.26: RPa of both electrochemical oscillators (a) and (b) for µ = 0.6, and
JRP of both systems (c).
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Figure 5.27: Synchronization indices CPR (a), SPR (b) and JPR (c) in de-
pendence on the coupling strength for the non-phase coherent electrochemical
oscillators.

We detect the transition to PS and GS simultaneously at the coupling strength
µ = 0.6, in accordance with theoretical results reported in [53]. As the electro-
chemical oscillators are highly non-coherent, a strong coupling strength is needed
for the onset of PS, and hence, the amplitudes are already highly correlated.

Now we regard the more complicated case of non-stationary data, where the
non-stationarity is imposed through a linear continuous change of a controllable
parameter, namely the applied potential. In this case we consider two different
values of the coupling strength: µ = 0.0 and µ = 0.6. We compute the indices
CPR, SPR and JPR for both coupling strengths in dependence on time by
choosing a window length of 20,000 data points and in each step shifting the
window by 1,000 data points (Figs. 5.28 and 5.29). Again, we choose RR = 0.1
for the computation. For µ = 0.0 the values of CPR are rather low all the
time. The maximum value that CPR reaches is 0.42, indicating the absence of
PS, as expected (Fig. 5.28 a). Analogously, the values of SPR and especially the
values of JPR are rather low in all windows, indicating also the absence of GS
(Fig. 5.28b,c).
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Figure 5.28: Synchronization indices CPR (a), SPR (b) and JPR (c) in de-
pendence on time for coupling strength µ = 0 for two non-phase coherent and
non-stationary electrochemical oscillators.
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Figure 5.29: Synchronization indices CPR (a), SPR (b) and JPR (c) in de-
pendence on time for coupling strength µ = 0.6 for two non-phase coherent and
non-stationary electrochemical oscillators.
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For µ = 0.6, we see a striking dependence on time: at the beginning and at
the end of the data set, the values of CPR, SPR and JPR are rather high,
indicating PS and GS, respectively (Fig. 5.29). However, in the middle of the
data set, the synchronization indices are rather small, indicating the lack of PS
and GS. Hence, due to the instationarity of the data, the synchronization degree
between both oscillators changes in time. Furthermore, we see, according with
the synchronization indices, that PS and GS sets on approximately at the same
time, i. e. the index CPR for PS reaches its maximum value when the indices
SPR and JPR also are maximal. This is again due to the strong non-coherence
of the electrochemical oscillators.

5.7 Algorithm to Detect Clusters of PS

As we have seen in Sec. 5.2, it is possible to detect PS between two systems
comparing the position of the local maxima in P1(τ) and P2(τ). In this section,
we propose an algorithm for the quantification of PS extended to N oscillators
that is rather useful for the detection of clusters of phase synchronized oscillators.
We begin with the simpler algorithm to detect PS for two complex oscillators,
and afterwards we extend it for the detection of clusters of oscillators in PS.

1. Compute P1,2(τ) of both systems based on the RPs (Eq. 5.8).

2. Determine the times τ i
1,2, where P1,2(τ) has local maxima.

dP1,2(τ
i)

dτ i
= 0 (5.22)

3. Compute the difference between the times of maximum probability of re-
currence

∆τ i = τ i
1 − τ i

2, i = 1, . . . ,M, (5.23)

where M is the number of local maxima.

If the systems are phase synchronized, the probability of recurrence is maximal
at the same time. Therefore, ∆τ i versus i fluctuates about 0. In contrast to this,
if the systems are not in PS, the maximum probability of recurrence does not
occur simultaneously and we observe a drift (Fig. 5.30 c). Hence, the slope slp
given by the linear regression of this curve can be used to quantify PS: slp ' 0
means PS and slp > 0 means non-PS.
Now we exemplify this algorithm in the case of two mutually coupled Rössler
systems (Eqs. 5.12) in the phase coherent regime. For ω1 = 0.98, ω2 = 1.02 and
µ = 0.05 both systems are in PS [53]. If we compute P (τ) for both systems, we
observe local maxima at τ = n · T , where T is the mean period of both Rössler
systems (Fig. 5.30 a). In this case we obtain slp = 0.0 for i = 0, . . . , 20 for
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Figure 5.30: P (τ) for the two mutually coupled Rössler systems in phase coherent
regime (Eqs. 5.12) for coupling strength µ = 0.05 (a) and for µ = 0.02 (b).
Solid line: system 1, triangles: system 2. c) Difference of times of maximum
probability of recurrence between both systems for µ = 0.05 (crosses) and for
µ = 0.02 (squares).
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Figure 5.31: P (τ) for the two mutually coupled funnel systems (Eqs. 5.13) for
coupling strength µ = 0.2 (a) and for µ = 0.15 (b). Solid line: system 1, dashed
line: system 2. c) Difference of times of maximum probability of recurrence
between the systems for µ = 0.2 (triangles) and for µ = 0.15 (squares).

coupling strength µ = 0.05, with standard deviation σ = 0.0. For µ = 0.02 we
obtain slp = 0.212 for i = 0, . . . , 20 , with σ = 0.068. Under the assumption
that the fluctuations about the regression lines are Gaussian distributed, an hy-
pothesis test can be performed: if slp > 1.96·2·σ

M
, then both systems are not in

PS. Applying this criterion to the former cases, we confirm that for µ = 0.05 the
systems are in PS and for µ = 0.02 the systems are not in PS, in accordance with
[53].
Now we regard the more complex case of two coupled Rössler systems in the
non-coherent funnel regime (Eqs. 5.13). In contrast to a direct use of the Hilbert
transformation the proposed algorithm does detect PS for the coupling strength
µ = 0.2 and non-PS for µ = 0.15: first we compute P (τ) for both systems for the
two values of µ (Fig. 5.31). Also in this case, we see that for µ = 0.2 the posi-
tions of the local maxima coincide for both oscillators (Fig. 5.31 a), whereas for
µ = 0.15 the positions of the local maxima do not coincide anymore (Fig. 5.31 b)
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5. Again ∆τ i yields a clear distinction for both cases (Fig. 5.31 c). For µ = 0.2
we obtain a mean slope slp = −0.0159 with σ = 0.117 for i = 0, . . . , 20. For
µ = 0.15 we observe again a drift, analogously to Fig. 5.31 c, with slp = 0.546
with σ = 1.97 for i = 0, . . . , 20. Applying the former hypothesis test to the
obtained values for slp we confirm the results presented in [53]: for coupling
strength µ = 0.2 we detect PS and for µ = 0.15 we detect non-PS.
The extension of this algorithm for the application to N oscillators is straight-
forward: we compute Pj(τ) for each oscillator j (Eq. 5.8) and their respectively
local maxima τ i

j according to Eq. 5.22. Then we choose the set of times of local
maxima τ i

r of an arbitrary oscillator r as reference and compute ∆τ i
j = τ i

j − τ i
r

for each oscillator j.
For the oscillators that are in PS with the reference oscillator, ∆τ i

j versus i fluc-
tuates around zero. But for the oscillators that are in non-PS with the reference
oscillator, ∆τ i

j versus i has mean slope greater than 0. Now even clusters of
oscillators in PS are easily recognized, as the mean slope of ∆τ i

j versus i is equal
for all oscillators j belonging to the same cluster.
To exemplify this algorithm we apply it first to a chain of coupled nonidentical
Rössler oscillators with a nearest-neighbor diffusive coupling:

ẋj = −ωjyj − zj,

ẏj = ωjxj + ayj + µ(yj+1 − 2yj + yj−1), (5.24)

żj = 0.4 + zj(xj − 8.5),

where the index j = 1, . . . , N denotes the position of an oscillator in the chain,
µ is the coupling coefficient and ωj corresponds to the natural frequency of each
individual oscillator [52]. We consider a linear distribution of natural frequencies
ωj = ω1 + δ(j − 1), where δ is the frequency mismatch between neighboring
systems. For coupling strength µ = 0.18 and δ = 9 × 10−3 we compute Pj(τ)
for j = 1, . . . , 50 and the positions of the local maxima τ i

j for each oscillator.
We choose the oscillator j = 1 as reference and compute ∆τ i

j for j = 1, . . . , 50
(Fig. 5.32 a). Furthermore, we represent the slope of ∆τ i

j versus i computed
by a linear regression for j = 1, . . . , 50 in Fig. 5.32 b. We detect 9 clusters
of oscillators in PS, in accordance with [52]. We have also analyzed this chain
of Rössler oscillators with other values of the coupling strength and we obtain
results in accordance with [52].

5In order to determine the local maxima of P (τ) in this case, a Butterworth filter was used
to avoid the small statistical fluctuations.
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Figure 5.32: a) Difference between the local maxima of the probability of recur-
rence for a chain of 50 Rössler oscillators diffusively coupled for µ = 0.18 and
δ = 9 × 10−3. b) Slope of ∆τ i

j versus i for j = 1, . . . , 50 with µ = 0.18 and
δ = 9 × 10−3
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5.7.1 Application to a Population of Chaotic Electrochem-

ical Oscillators

In order to show the applicability of the method to an experimental system
we consider data from a population of 64 nonidentical chaotic electrochemical
oscillators with weak global coupling. The electrochemical system is the elec-
trodissolution of Ni in 4.5 mol/L sulfuric acid solution (see [31] for the details of
the experiment). The electrochemical oscillators are electrically coupled with a
combination of one series (Rs) and 64 parallel (Rp) resistors; a global coupling
parameter can be defined as µ = Rs/(RpN), where N = 64 is the number of
elements.
We present here the results for three different coupling strengths: without (µ =
0.0), with small (µ = 0.05), and with relatively strong (µ = 0.1) coupling. With-
out coupling the oscillators have an approximately unimodal frequency distribu-
tion with a mean frequency of 1.219 Hz and a standard deviation of 18 mHz.
After computing Pj(τ) for j = 1, . . . , 64 we calculate ∆τ i

j , where the oscillator
r = 1 was chosen as reference (Fig. 5.33). We note that in the absence of coupling
the slope of ∆τ i

j versus i is different for each oscillator (Fig. 5.33 a, b). Increas-
ing the coupling strength to µ = 0.05 we observe a main group of oscillators
that have almost slope 0, but still many of them are spread out (Fig. 5.33 c, d).
If we increase further the coupling strength to µ = 0.1, we observe that all 64
oscillators have an approximately vanishing slope, and therefore they are in PS
(Fig. 5.33 e, f), as reported in [31].

5.8 Discussion

In this chapter new indices to detect PS and GS (including LS) for chaotic and
complex systems have been introduced, based on the fundamental idea of re-
currences in phase space. They have been then applied to model systems and
experimental data.
First, we have introduced the index CPR (Correlation of Probability of Recur-
rence) for the detection of PS, which is based on the probability of recurrence
to the neighborhood of a former visited point in phase space (Eq. 5.8). We have
shown, that this index is rather robust against noise: even for 80% observational
noise, the method distinguishes rather well between PS and non-PS. Further, we
have seen, that CPR is almost not influenced by non-stationarities. It also works
for chaotic systems with a rather strong phase diffusion, as has been demon-
strated for the funnel system and for non-phase coherent experimental data from
electrochemical oscillators. It also detects rather well the onset of PS (Sec. 5.5).
The robustness with respect to non-stationarities is due to the fact, that there
is no need to choose an origin, about which all the trajectories of the system
oscillate. Hence, CPR is not influenced if the ”origin” wanders with time (by the
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Figure 5.33: a) Difference between the local maxima of the probability of re-
currence ∆τ i

j versus i (Eq. 5.23) for a population of 64 chaotic electrochemical
oscillators and slope of ∆τ i

j versus j for j = 1, . . . , 64 (j denotes the oscillator
and i the time). (a) and (b) for coupling strength µ = 0, (c) and (d) for µ = 0.05,
(e) and (f) for µ = 0.1.
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definition of the phase based on the Hilbert transformation, difficulties appear
with non-stationary time series, as the the origin varies with time [66]).
The robustness with respect to noise, is due to the fact that considering the prob-
ability of recurrence (Eq. 5.8) we average out synchronization errors induced by
the present noise.
As we have mentioned in Sec. 5.2, the probability of recurrence (Eq. 5.8) can be
considered as a generalized autocorrelation function, because it takes moments of
higher order into account. Simulations show that the linear autocorrelation func-
tion can detect PS in rather ”simple” cases (e. g. a periodically driven Rössler
system), but it fails in the more complex ones (e. g. if rather high levels of noise,
non-stationarities or strong non-phase coherent attractors are present).
The disadvantage of others techniques proposed so far for the synchronization
analysis of complex chaotic signals, e. g. in [53], is that the derivative of the
time series has to be computed. This can be problematic in the presence of noise.
Furthermore, for higher dimensional systems, the approach presented in [53] does
not always work, as the definition of the phase is based on an appropriate pro-
jection, and this cannot be always found. With the index CPR we overcome all
these problems.
Secondly, two different indices for GS (including LS) have been introduced. The
first one, JPR (Joint Probability of Recurrence), compares the local recurrences
of each point in phase space with the ones of the interacting (sub)system. It has
the advantage, that it recognizes very well the transition between PS and GS (see
Sec. 5.5). The other proposed index for GS, is SPR (Similarity of Probability
of Recurrence) and it is based on the probability of recurrence (Eq. 5.8), as well
as CPR. It does not distinguish between PS and GS as well as JPR, but it is
extremely robust against noise and instationarities for the same reason mentioned
above. Hence, depending on the case one is faced with, one has to choose the
most appropriate of them, or even use both and compare the results.
Furthermore, an alternative algorithm has been proposed, that allows to identify
clusters of PS in populations of weakly coupled oscillators. It has been success-
fully applied to simulated, as well as experimental data.
All the different indices proposed here do not require a large computational effort
and the number of data points needed for the analysis is rather low. They are
based on the fundamental relationship between recurrences and synchronization.
However, a correct synchronization analysis should be accompanied always by an
hypothesis test. Thiel et al. [94] have recently proposed an algorithm to gener-
ate surrogates, which allows to test for PS. Hence, the next steps to complete
the methods presented in this work for the synchronization detection of complex
signals, will be to apply them together with the surrogates technique presented
in [94].



Chapter 6

Conclusions and Outlook

In this work the relationship between recurrences and synchronization of chaotic
and complex systems has been investigated.
First (Chap. 3), a new method for the computation of multivariate recurrence
plots has been proposed (joint recurrence plots), which considers joint or simul-
taneous recurrences in the respective phase spaces of the coupled subsystems. It
differs from the former technique to compute recurrence plots of bivariate data,
since it does not ”mix” the phase spaces of both subsystems, but it considers
each one separately.
Furthermore, it has been shown, that by means of the new joint recurrence plots
it is possible to estimate the joint Rényi entropy of second order JK2. Then it has
been focused on the synchronization analysis by means of JK2, and its application
has been exemplified for the two bidirectionally coupled Rössler systems. There,
we have found new characteristics of the transition to phase synchronization and
lag synchronization (Chap. 4). Some of them are:

• The transition to phase synchronization for intermediate and large coupling
strengths can be a chaos-period-chaos one.

• For intermediate and large coupling strengths the whole system is more
chaotic inside than outside the Arnold tongue , i. e. the whole system is
more chaotic when the subsystems synchronize. This seems to be at a first
counterintuitive.

• For large frequency mismatch and increasing coupling strength, a direct
transition from non-phase synchronized regime to lag synchronized regime
is observed. In the course of this transition, the amplitudes become strongly
correlated, but the phases do not lock.

Furthermore, the sum of the positive Lyapunov exponents has been compared
with JK2, and we have concluded, that one obtains more information about
the transition to PS by means of JK2 than by means of the sum of the pos-
itive Lyapunov exponents. This is due to the nonhyperbolicity of the system
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under consideration. Hence, JK2 may be a more appropriate measure for the
predictability of the system under consideration than the sum of the positive
Lyapunov exponents [72].
Moreover, a detailed analysis of the Lyapunov spectrum in the parameter space
has revealed that there is region for intermediate coupling strengths, where the
transition to phase synchronization is not given anymore by the zero crossing of
the fourth Lyapunov exponent, as the latter is already negative outside of the
Arnold tongue. That means, that because of the strong coupling, the phases have
established a correlation also outside the synchronization region.
In the last part of this work (Chap. 5), a more direct and pragmatic relationship
between recurrences and synchronization of chaotic systems has been developed
[42]. Then, four different indices have been proposed that quantify phase and
generalized synchronization. The major advantage of these indices with respect
to the ones introduced in the literature so far, is their robustness against noise
and instationarity, as well as their applicability to systems with a strong phase
diffusion. This has been demonstrated for the Rössler system in funnel regime
and for experimental non-phase coherent data from electrochemical experiments,
which were also subjected to instationarity [73].
The next steps to be undertaken, are the application of the method to physio-
logical or geophysical data, where it is difficult to define directly a phase. Fur-
thermore, the performance of an hypothesis test is necessary to complete the
synchronization analysis and test the power and specificity of the proposed in-
dices. The application of the method of surrogates proposed in [94] seems to be
very promising. Moreover, the recurrence based indices introduced in this work
indicate the onset of PS and GS rather well. Hence, they are especially appro-
priate for the performance of the hypothesis test.
The analysis of generalized synchronization in structurally nonequivalent systems
is still cumbersome. The recurrence based indices for GS may be more appropri-
ate for the analysis of this kind of systems.
Furthermore, the automatical detection of n : m phase synchronization of com-
plex systems is still an open question. The relationship between recurrences and
synchronization can eventually be exploited to develop suitable algorithms to
tackle this task.
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Automatization of the Algorithm
to Compute JK2

To compute the joint Rényi entropy JK2 (Eq. 3.12) in the whole range of parame-
ters ν ∈ [−0.04, 0.04] and µ ∈ [0.0, 0.12], the algorithm based on JRPs (Eq. 3.10)
has to be automated. First, the distribution of diagonal lines for different thresh-
olds ε has to be computed, as the entropy is only well defined when a scaling
region with ε is found. In the case of JRPs we have in general two thresholds εx

and εy. We compute these two thresholds fixing the value of RR (Eq. 2.2) and
applying the algorithm presented in Sec. 2.3. The crucial point in the automati-
zation is the estimation of the scaling region of lnPRR(l) vs. l and the plateau
in JK2(RR) vs. RR. In both cases we apply a cluster dissection algorithm [85].
The algorithm divides the set of points into distinct clusters. In each cluster a
linear regression is performed. The algorithm minimizes the sum of all square
residuals in order to determine the scaling region and the plateau. To find both
regions automatically, we use the following parameters:

• We consider only diagonal lines up to length lmax = 400. Longer lines are
excluded because of finite size effects.

• We consider only values of PRR(l) with PRR(l) > 500 for the same reason
as in the last item.

• We use 40 different values for εx and εy, corresponding to 40 equally spaced
recurrence rates RR between 1% and 95%, to have a good defined plateau
in K2(RR) vs. RR.

• We use 10, 000 data points of each simulated trajectory. The more data
points one uses, the more pronounced the scaling regions. Note that the
computation time increases approximately with N 2.

• We have to specify for the applied cluster dissection algorithm the number
of clusters in each run: for the detection of the scaling region in lnPRR(l)
vs. l, we choose 2 different clusters and use the slope of the largest cluster.
For the detection of the plateau in K2(RR) vs. RR, we choose 3 clusters
and use the value of the cluster with the minimum absolute slope.
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These choices have proven to be rather appropriate for the estimation of the scal-
ing regions. All these parameters are defaults of the computer program we have
used. Furthermore, this automatization of the algorithm has been already suc-
cessfully applied to the computation of the stability of trajectories of extrasolar
planetary systems [7].
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